ACQUE REFLUE

PROGETTAZIONE E GESTIONE DI IMPIANTI PER IL TRATTAMENTO E LO SMALTIMENTO

Scheda sul sito >

- Impostazione degli schemi di processo
- Criteri di scelta delle tecnologie e dei reattivi
- Procedure di dimensionamento, casi studio ed esempi numerici
- Microbiologia e disfunzioni del processo a fanghi attivi
- · Analisi di aspetti pratici, economici e gestionali
- Normativa e procedure amministrative

Giovanni De Feo Sabino De Gisi Maurizio Galasso

ACQUE REFLUE

Progettazione e gestione di impianti per il trattamento e lo smaltimento

Giovanni De Feo Sabino De Gisi Maurizio Galasso Ingegneria sanitaria ambientale – Acque Reflue

ISBN 978-88-579-0118-8

© 2012 by Dario Flaccovio Editore s.r.l. - tel. 0916700686 www.darioflaccovio.it info@darioflaccovio.it

Prima edizione: marzo 2012

De Feo, Giovanni <1969->

Ingegneria sanitaria ambientale: Acque reflue : progettazione e gestione di impianti per il trattamento e lo smaltimento / Giovanni De Feo, Sabino De Gisi, Maurizio Galasso. -

Palermo: D. Flaccovio, 2012. ISBN 978-88-579-0118-8 1. Acque reflue – Smaltimento.

I. De Gisi, Sabino <1980-> II. Galasso, Maurizio <1953->

628.3 CDD-22 SBN PAL0240118

CIP – Biblioteca centrale della Regione siciliana "Alberto Bombace"

Stampa: Tipografia Priulla, marzo 2012

RINGRAZIAMENTI

Ringraziamo tutti coloro che hanno direttamente e indirettamente contribuito alla stesura di questo lavoro, in modo particolare Alessio Colletti, Claudio Di Iaconi, Michele Galdi, Salvatore Guadagnuolo, Giovanni Mappa, Roberta Porcu, Andrea Raimo, Roberto Ramadori, Giovanni Romano, Valter Tandoi e Renato Tettamanzi. Si ringraziano tutte le aziende citate nel testo e, in particolare, la Bierrechimica Srl, nella persona del titolare, sig. Bruno Ronca, per la collaborazione prestata nello svolgimento di prove e sperimentazioni riportate nel testo. Si rivolge, infine, un ringraziamento anticipato a chi vorrà segnalarci errori e osservazioni utili a migliorare il testo.

Nomi e marchi citati sono generalmente depositati o registrati dalle rispettive case produttrici.

L'editore dichiara la propria disponibilità ad adempiere agli obblighi di legge nei confronti degli aventi diritto sulle opere riprodotte.

La fotocopiatura dei libri è un reato.

Le fotocopie per uso personale del lettore possono essere effettuate nei limiti del 15% di ciascun volume/fascicolo di periodico dietro pagamento alla SIAE del compenso previsto dall'art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633. Le riproduzioni effettuate per finalità di carattere professionale, economico o commerciale o comunque per uso diverso da quello personale possono essere effettuate solo a seguito di specifica autorizzazione rilasciata dagli aventi diritto/dall'editore.

INDICE

Premessa Presentazione

1. Le	caratte	ristiche de	elle acque reflue		
1.1.	Cenni	introduttiv	ri	pag.	1
1.2.	L'inqui	inamento i	drico	»	1
	1.2.1.	Classifica	azione dell'inquinamento in base all'origine	>>	2
		1.2.1.1.	Inquinamento di origine urbana	>>	2
		1.2.1.2.	Inquinamento di origine industriale		2
		1.2.1.3.	Inquinamento di origine agricola o zootecnica	>>	3
	1.2.2.	Classifica	azione dell'inquinamento in funzione degli inquinanti		3
		1.2.2.1.	Sostanze organiche naturali	>>	3
		1.2.2.2.	Sostanze inorganiche tossiche	>>	6
		1.2.2.3.	Sostanze inorganiche indesiderabili in quantità elevate	>>	6
		1.2.2.4.	Sostanze organiche di sintesi	>>	6
		1.2.2.5.	Solidi sospesi	>>	6
		1.2.2.6.	Sostanze che modificano il pH	>>	7
		1.2.2.7.	Inquinamento termico	>>	7
		1.2.2.8.	Inquinamento microbiologico	>>	7
1.3.	Caratte	erizzazion	e delle acque reflue	>>	7
	1.3.1.	Caratteri	stiche fisiche	>>	7
		1.3.1.1.	Temperatura	>>	7
		1.3.1.2.	Colore	>>	8
		1.3.1.3.	Odore	>>	8
		1.3.1.4.	Conducibilità elettrolitica	>>	8
		1.3.1.5.	Solidi	>>	8
	1.3.2.	Caratteri	stiche chimiche	>>	10
		1.3.2.1.	Domanda chimica di ossigeno (COD)	>>	10
		1.3.2.2.	Domanda biochimica di ossigeno (BOD)	>>	12
		1.3.2.3.	Composti dell'azoto	>>	20
		1.3.2.4.	Composti del fosforo	>>	21
		1.3.2.5.	Metalli pesanti	>>	21
		1.3.2.6.	Oli e grassi	>>	22
		1.3.2.7.	Tensioattivi	>>	23
		1.3.2.8.	Composti organici di sintesi	>>	23
		1.3.2.9.	Microinquinanti organici	>>	23
		1.3.2.10.	Ossigeno disciolto	>>	23
		1.3.2.11.	pH	>>	24
		1.3.2.12.	Contenuto salino	>>	24
	1.3.3.	Caratteri	stiche microbiologiche	>>	24
	1.3.4.		zione tipica dei liquami domestici e carichi specifici tipici	»	26
	1.3.5.		amento e conservazione dei prelievi	»	28
		1.3.5.1.	Conservazione del campione	»	31
	1.3.6.	Caratteri	stiche quantitative		31
			Acque reflue domestiche		32

		1.3.6.2.	Acque reflue industriali	»	33
		1.3.6.3.	<u>-</u>	»	34
		1.3.6.4.		»	34
1.4.	Defini		e portate	»	35
	1.4.1.		1	»	35
	1.4.2.		'utenza	»	36
	1.4.3.	Apporti i	idraulici e organici per diverse utenze	»	38
	1.4.4.	~ ~	i tempo secco	»	42
		1.4.4.1.	Apporti civili	»	43
		1.4.4.2.	**	»	45
		1.4.4.3.	**	»	46
	1.4.5.	Portata d	i pioggia	»	46
		1.4.5.1.	7 00	»	47
		1.4.5.2.	Dispositivi per il controllo dell'inquinamento		
			delle acque meteoriche di dilavamento	»	51
	1.4.6.	Portate d	i progetto	»	53
1.5.	Esemp		e numerici	»	55
	1.5.1.		nazione analitica dell'azoto ammoniacale nelle acque	»	55
	1.5.2.		nazione analitica dei metalli pesanti	»	56
	1.5.3.		nazione analitica dei solventi organici	»	58
	1.5.4.		nazione analitica della tossicità con Daphnia magna		
			lutazione dell'accettabilità di un effluente	»	59
		1.5.4.1.	Materiali per il test	»	59
		1.5.4.2.	Reagenti e acqua di diluizione	»	60
		1.5.4.3.		»	60
		1.5.4.4.	Metodo per la valutazione dell'accettabilità di un effluente		
			da un impianto di depurazione	»	61
	1.5.5.	Esempio	numerico sul calcolo delle concentrazioni di BOD ₅ e TSS		
		in ingres	so a un impianto di depurazione	»	61
	1.5.6.	Esempio	numerico sul calcolo del BOD carbonioso	»	62
	1.5.7.	Esempio	numerico sul calcolo del BOD di campioni di acque reflue diluite	»	63
	1.5.8.	Esempio	numerico sul calcolo delle portate in un impianto di depurazione		
		per reflui	urbani	>>	66
1.6.	Bibliog	grafia		>>	67
2. Imp			schema di processo		
2.1.			/i	»	69
2.2.	Tecnic		i e tecniche impiantistiche	»	69
	2.2.1.	Descrizio	one di un impianto di depurazione	»	70
		2.2.1.1.	La linea acque	»	73
		2.2.1.2.	La linea fanghi	>>	74
		2.2.1.3.	La linea gas e aria esausta	>>	76
	2.2.2.	Principal	li tipologie di impianto per la depurazione dei reflui urbani		
			ı fanghi attivi	>>	77
2.3.			del ciclo di trattamento per la depurazione		
		_	e urbane	>>	79
	2.3.1.		a I (< 2000 AE)	>>	80
	2.3.2.		a II (2000-10.000 AE)	>>	81
	2.3.3.		a III (10.000-50.000 AE)	>>	81
	2.3.4.	Tipologia	a IV (> 50.000 AE)	»	82

Indice

	2.3.5.	Ulteriori osservazioni in merito all'impostazione del ciclo di trattamento	
2.4	<i>C</i> : .	per la depurazione delle acque reflue urbane	> 83
2.4.		generali per la scelta del ciclo di trattamento per la depurazione	02
		efluo generico	
		Aspetti generali	
	2.4.2.		
		2.4.2.1. Acque reflue urbane	0.0
2.5.	Un coc	so paradigmatico d'impostazione del ciclo di processo per la depurazione) 93
2.5.		efluo industriale»	> 97
2.6.		i pratici»	
2.7.	_	grafia »	
2.7.	Dionog	51 4114	7 101
3. I tr		nti preliminari	
3.1.		introduttivi»	107
3.2.	Griglia	atura e stacciatura»	108
	3.2.1.	Grigliatura	108
		3.2.1.1. Quantità di materiale raccolto dalle griglie	108
		3.2.1.2. Caratteristiche costruttive delle diverse tipologie di griglie	111
		3.2.1.3. Criteri di dimensionamento della grigliatura	120
	3.2.2.	Stacciatura	127
	3.2.3.	Disfunzioni e correzioni	127
3.3.	Dissab	biatura»	128
	3.3.1.		128
	3.3.2.	Quantità, caratteristiche, lavaggio e smaltimento delle sabbie rimosse »	128
	3.3.3.	Le unità di dissabbiamento	129
		3.3.3.1. Dissabbiatori a canale	129
		3.3.3.2. Dissabbiatori a vortice	135
		3.3.3.3. Dissabbiatori aerati	137
		3.3.3.4. Air-lift	143
	3.3.4.	Disfunzioni e correzioni	143
3.4.	Disole	atura»	144
3.5.	Preaer	azione»	145
3.6.	Trattar	mento dei bottini»	145
3.7.		zzazione	148
3.8.	Esemp	i di realizzazioni con particolari costruttivi»	151
3.9.	Esemp	i numerici»	159
	3.9.1.	Dimensionamento del comparto di grigliatura	> 159
	3.9.2.	Dimensionamento di un dissabbiatore aerato	163
3.10.	Bibliog	grafia»	> 166
4 11 4	44		
4. 11 τ 4.1.		ento primario e i processi di sedimentazione e flottazione introduttivi	> 169
4.1. 4.2.			
T.∠.	4.2.1.		1.00
	4.∠.1.	Cenni sulla teoria della sedimentazione	4=0
		1010 7 1 11 0	4=0
		4.2.1.2. Particelle floccose	
	122	4.2.1.3. Particelle in vasche di sedimentazione reali	4-4
	+.∠.∠.	4.2.2.1. Vasche a flusso ascensionale	
		T.L.L.1. Vascije a hussu ascensionale	1/4

		4.2.2.2. Vasche a letto di fango		>>	177
		4.2.2.3. Vasche a flusso longitudi	nale	>>	178
				>>	18
	4.2.3.			>>	180
	4.2.4.		amento della sedimentazione primaria	»	19.
	4.2.5.		à di sedimentazione primaria	»	193
	4.2.6.	*		<i>"</i>	198
	4.2.7.			<i>"</i>	199
	4.2.8.	Stima dei rendimenti depurativi pre		"	1).
	4.2.0.				20
4.3.	Laadin			» »	20
4.3.	4.3.1.		npaccato		20
				»	20:
	4.3.2. 4.3.3.		1 · 1 11 · ·	>>	
			pacchi lamellari	>>	208
	4.3.4.			>>	213
4.4.				>>	21:
	4.4.1.			>>	21:
	4.4.2.			>>	210
	4.4.3.			>>	218
	4.4.4.			>>	219
			a DAF – Il caso dell'impianto		
			industriali di Solofra (AV)	>>	22
			roprietà di flottazione di un refluo	>>	220
		4.4.4.3. Criteri di dimensionamen	nto	>>	220
			presenti sul mercato		230
4.5.	Esemp	numerici		>>	23
4.6.	Biblio	rafia		>>	242
5. Tr		ti secondari e terziari con process			
5.1.	Cenni	ntroduttivi		>>	245
5.2.	Simbo	ogia		>>	240
5.3.	Cenni		ssa sospesa	>>	250
	5.3.1.	Introduzione ai processi a fanghi at	tivi	>>	250
	5.3.2.	I principali parametri di progetto e	di gestione	»	252
	5.3.3.	Processi a biomassa sospesa per la ri	mozione del BOD e per la nitrificazione	>>	262
	5.3.4.		controllo dell'azoto	»	265
	5.3.5.		rimozione del fosforo	>>	268
	5.3.6.			»	270
5.4.		nsionamento del processo anossico/			
			la sostanza organica biodegradabile	»	27
		•	nento		
	5.4.2.	Caratterizzazione del refluo influen		.,	_,,
	J. 1.2.			»	27
	5.4.3.	Determinazione degli ulteriori para		″	<i>21</i> .
	J. T .J.		nto		27:
	5 1 1			»	
	5.4.4.		azione	>>	270
	5.4.5.		e	>>	282
	5.4.6.		zione standard (SOTR) e della portata		00
			dispositivi di aerazione	>>	289
	5.4.7.	Calcolo della concentrazione del BO	DD nell'effluente	>>	294

Indice

	5.4.8.	II progetto	della sedimentazione secondaria	>>	294
	5.4.9.		onamento del processo anaerobico/anossico/aerobico		
			limentazione secondaria per la rimozione del fosforo,		
			e della sostanza organica biodegradabile	>>	296
5.5.	Config		ei bacini di aerazione	>>	302
5.6.	_		tivi dei reattori di ossidazione	>>	304
5.7.			o dei fanghi e particolari costruttivi delle vasche		
			e secondaria	>>	314
5.8.			zione e di miscelazione	>>	323
	5.8.1.		1	»	323
	5.8.2.	Aerazione	meccanica con turbine	»	326
	5.8.3.	Aerazione	mediante aria insufflata	»	331
	5.8.4.	Aerazione	mediante aeratori meccanici	»	342
	5.8.5.	Aerazione	mediante ossigeno puro	»	346
	5.8.6.	Aerazione	mediante sistemi ibridi	>>	351
	5.8.7.	Mixer		>>	352
	5.8.8.	Abbiname	ento di ossigenatori con i mixer	»	353
5.9.	Disfun		rezioni	»	353
5.10.	Impiar	ti a fanghi	attivi compatti e impianti di concezione particolare	»	357
5.11.	Trattar	nenti biolog	gici mediante colture sospese: microbiologia del processo		
	a fangl	ni attivi		»	365
	5.11.1.	Generalità	1	»	365
	5.11.2.	Popolazio	ni microbiche degli impianti a fanghi attivi	>>	366
			I batteri fiocco-formatori: eterotrofi aerobici, nitrificanti		
			e denitrificanti	»	367
		5.11.2.2.	Le alterazioni della struttura del fiocco di fango attivo	»	368
			I batteri filamentosi e il fenomeno del bulking	»	369
		5.11.2.4.	L'identificazione dei batteri filamentosi su base morfologica	>>	372
		5.11.2.5.	I principali batteri filamentosi causa di disfunzioni		
			negli impianti	>>	373
		5.11.2.6.	Batteri presenti nei sistemi con alternanza di zone aerobiche		
			e anaerobiche: batteri polifosfatici, G-batteri e GAO	»	376
		5.11.2.7.	Batteri che provocano la formazione delle schiume biologiche	>>	379
		5.11.2.8.	Strategie di controllo del bulking	»	380
		5.11.2.9.	Strategie di controllo delle schiume biologiche	»	384
	5.11.3.	Osservazio	oni microscopiche del fango attivo	»	384
		5.11.3.1.	Microscopio ottico	»	385
		5.11.3.2.	Osservazione a fresco e colorazioni della sospensione microbica	>>	385
	5.11.4.	Stima di b	iomassa e attività	»	388
		5.11.4.1.	Analisi batteriologiche	»	388
		5.11.4.2.	Caratterizzazione di biomasse miste mediante metodi		
			biomolecolari	>>	389
		5.11.4.3.	Stime di biomassa	»	393
		5.11.4.4.	Stime di attività	>>	393
5.12.				>>	395
			ne dei dati di progetto e dei riferimenti normativi	»	395
	5.12.2.	Caratteriz	zazione del refluo influente al biologico	»	397
			ei parametri derivati indispensabili per il dimensionamento	»	398
			ne dei parametri delle cinetiche dei processi di ossidazione		
		della frazi	one carboniosa, nitrificazione e denitrificazione		308

		5.12.5.1.	Parametri delle cinetiche per i microrganismi nitrificanti,		
			denitrificanti ed eterotrofi alla temperatura di progetto	>>	39
		5.12.5.2.	Tasso di crescita specifico dei microrganismi nitrificanti	»	39
		5.12.5.3.	Età del fango teorica e di progetto	»	40
		5.12.5.4.	Produzione di biomassa	>>	40
		5.12.5.5.	Azoto nitrico prodotto dalla nitrificazione	>>	40
		5.12.5.6.	Produzione della biomassa totale	>>	40
		5.12.5.7.	Massa di vss e Tss nel bacino di aerazione	»	40
		5.12.5.8.	Volume del bacino di aerazione	>>	40
		5.12.5.9.	Tempo di residenza idraulico	»	40
			Concentrazione di solidi sospesi volatili in miscela aerata (VSS _{MI})	>>	40
			Fattore di carico organico e fattore di carico volumetrico	>>	40
			Resa osservata sui TSS e sui VSS	>>	40
			Domanda teorica di ossigeno (R_0)	>>	40
			Controllo dell'alcalinità	»	40
	5.12.6.		onamento della pre-denitrificazione	>>	40
			Dati di progetto	»	40
			Concentrazione di biomassa attiva denitrificante	»	40
			Rapporto di ricircolo della miscela aerata (IR)	»	40
			Portata massica di N-NO ₃ effettiva in ingresso al bacino		
		5.12.0.11	di denitrificazione	»	40
		5 12 6 5	Volume del reattore di denitrificazione	»	40
			Tasso di crescita specifico dei microrganismi denitrificanti	»	40
			Recupero di ossigeno in denitrificazione	<i>"</i>	40
			Controllo dell'alcalinità	<i>"</i>	40
			Potenza totale per la miscelazione	<i>"</i>	40
	5 12 7		one della capacità di ossigenazione standard (SOTR) e della portata	″	70
	5.12.7.			»	40
			Ossigeno disciolto alla temperatura di 20 °C e di progetto	<i>"</i>	40
			Rapporto P_b/P_a	<i>"</i>	40
		5.12.7.2.		"	40
		J.12.7.J.	specifiche del sito	»	40
		5 12 7 4	Ossigeno disciolto alle condizioni standard	<i>"</i>	40
			Capacità di ossigenazione in condizioni standard (SOTR)	» »	40
			Portata di aria	» »	40
	5 12 9		nto del biologico a fanghi attivi progettato		40
			della sedimentazione secondaria	»	40
	3.12.9.	_		»	40
			Dati di progetto	>>	
			Superficie complessiva, superficie e diametro unitario	»	40
			Scelta del modello di vasca di sedimentazione	»	41
		5.12.9.4.	Verifica del carico superficiale di solidi sospesi (P_{SS}) e del tempo		4 4
		5 10 0 5	di detenzione idraulica su $(q_{24})_C$	>>	41
		5.12.9.5.	Verifica del carico superficiale di solidi sospesi (P_{SS}) e		4 4
	E 10 10	TT14 · ·	del tempo di detenzione idraulica su q_{PM}	>>	41
			scenari di progetto	>>	41
.13.	Bibliog	grafia		»	41
Tr.	44		. ,		
			ari e terziari con processi a biomassa adesa i		4 4
.1.	I anni	introduttiv	n e e e e e e e e e e e e e e e e e e e	>>	41

6.2.			assa adesa non sommersa	»
	6.2.1.	-	colatori	>>
		6.2.1.1.	Struttura e funzionamento	>>
		6.2.1.2.		>>
		6.2.1.3.		>>
		6.2.1.4.	Caratteristiche costruttive	>>
			6.2.1.4.1. Riempimento del letto	»
			6.2.1.4.2. Tasso di dosaggio del liquame	>>
			6.2.1.4.3. Sistemi di distribuzione	>>
			6.2.1.4.4. Sistema di drenaggio	>>
			6.2.1.4.5. Vasche di sedimentazione	>>
	6.2.2.	Rotori b	iologici	>>
		6.2.2.1.	Funzionamento	>>
		6.2.2.2.	Disposizione dei biodischi	>>
		6.2.2.3.	Dimensionamento dei biodischi	>>
		6.2.2.4.	Un esempio di biodischi disponibili in commercio	>>
		6.2.2.5.	Considerazioni pratiche sulla progettazione e gestione dei biorulli®	»
6.3.	Proces	ssi a biom:	assa adesa su riempimento interno mobile e fisso (in vasche	.,
				>>
	6.3.1.		a biomassa adesa su riempimento interno mobile (in vasche	
			attivi)	>>
		6.3.1.1.		>>
		6.3.1.2.		>>
	632		a biomassa adesa su riempimento interno fisso	
	0.5.2.		ne a fanghi attivi)	>>
		6.3.2.1.	Processo Ringlace®	»
		6.3.2.2.	Processo Bio-2-Sludge®	»
5.4.	Proces		assa adesa sommersa (biofiltri)	<i>"</i>
			o di funzionamento dei BAFS	»
		_	ri di funzionamento	<i>"</i>
	0.1.2.	6.4.2.1.	Mezzo di riempimento	<i>"</i>
		6.4.2.2.	Aerazione	<i>"</i>
		6.4.2.3.		<i>»</i>
		6.4.2.4.		<i>"</i>
		6.4.2.5.	Controlavaggio	» »
	6/3		li processi a scala industriale	» »
	0.4.3.	6.4.3.1.	Processo Biocarbone®	"
		6.4.3.1.	Processo Biofor®	<i>»</i>
				»
		6.4.3.3.	Processo Biostyr®	
	6 1 1	6.4.3.4.	Processo Biopur®	>>
	6.4.4.		si di trattamento mediante BFS	>>
		6.4.4.1.	Rimozione della frazione carboniosa e dei solidi sospesi	>>
		6.4.4.2.	Rimozione dell'azoto	>>
		6.4.4.3.	Rimozione del fosforo	»
		6.4.4.4.	Processi combinati di rimozione	»
	6.4.5.		pio di realizzazione di biofiltro sommerso	>>
		6.4.5.1.	Descrizione dei biofiltri	>>
		6.4.5.2.	Lavaggio dei biofiltri	»
		6.4.5.3.	Stoccaggio e dosaggio del metanolo	>>

6.5.	Esemp	i numerici	>>	498
	6.5.1.	Dimensionamento di letti percolatori mono- e bi- stadio	>>	498
6.6.	Bibliog	grafia	>>	506
7. Tra	attamen	ti chimico-fisici		
7.1.	Cenni	introduttivi	»	509
7.2.	Equali	zzazione	»	510
	7.2.1.	Equalizzazione con miscelatori meccanici	>>	510
	7.2.2.	1	>>	511
	7.2.3.	Volumi delle vasche	>>	511
7.3.	Neutra	lizzazione	>>	512
	7.3.1.		>>	512
		7.3.1.1. Miscelazione di correnti acide e basiche	>>	512
		7.3.1.2. Neutralizzazione mediante l'uso di acidi o basi forti	»	512
		7.3.1.3. Uso di letti calcarei	>>	513
		7.3.1.4. Uso di anidride carbonica gassosa	»	513
	7.3.2.	- 1	»	514
7.4.	Precipi	itazione	»	515
	7.4.1.	Precipitazione dei metalli	>>	516
	7.4.2.	Precipitazione degli anioni	>>	517
	7.4.3.	Precipitazione di molecole organiche	>>	517
	7.4.4.		>>	518
		7.4.4.1. Rimozione del fosforo	>>	519
		7.4.4.2. Rimozione dell'azoto	»	521
7.5.	Chiarit	flocculazione	»	521
	7.5.1.	Coagulazione	>>	521
		7.5.1.1. I coagulanti	»	523
	7.5.2.	Il controllo del pH	>>	523
	7.5.3.	Flocculazione	>>	524
		7.5.3.1. I flocculanti	»	524
	7.5.4.	Coagulazione con adsorbimento o coprecipitazione	>>	526
	7.5.5.	Prove di laboratorio per la scelta del coagulante e del suo dosaggio ottimale	»	527
		7.5.5.1. L'impostazione del problema, i materiali e i metodi	>>	527
		7.5.5.2. L'elaborazione dei risultati con tecniche di analisi multicriteriale	»	529
	7.5.6.	Dimensionamento di un impianto di precipitazione chimica	>>	535
		7.5.6.1. Coagulazione	»	535
		7.5.6.2. Flocculazione	»	539
		7.5.6.3. Sedimentazione	>>	542
		7.5.6.4. Produzione e ricircolo del fango di supero	>>	542
		7.5.6.5. Rendimenti depurativi conseguibili	»	546
		7.5.6.6. Tipologie di miscelatori utilizzati per la miscelazione rapida	»	546
		7.5.6.7. Tipologie di miscelatori utilizzati per la flocculazione	>>	549
		7.5.6.8. Particolarità impiantistiche	>>	550
		7.5.6.9. Esempi di realizzazioni e di adeguamenti di impianti esistenti	»	556
	7.5.7.	La sedimentazione assistita per la depurazione delle acque reflue urbane	>>	558
7.6.		zione chimica	»	561
	7.6.1.	I composti del cloro	»	563
	7.6.2.	Ozono	»	565
		7.6.2.1. Applicazione dell'ozono	»	566
	7.6.3.	Perossidi	>>	568

Indice

	7.4			7.00
		Permanganati	>>	569
	7.6.5.	Processi di ossidazione avanzata	>>	571
	7.6.6.	Ossidazione ad umido	>>	572
		7.6.6.1. Applicazioni della wao al trattamento dei reflui industriali	>>	573
7.7.		ione	>>	573
7.8.		pimento	>>	574
	7.8.1.	Adsorbenti non utilizzati per trattamenti depurativi	>>	574
	7.8.2.	Argille adsorbenti	>>	575
	7.8.3.	Allumina attivata	>>	575
	7.8.4.	Pirolusite	>>	575
		Bayoxide®	>>	576
		Resine adsorbenti e setacci molecolari	>>	576
7.9.	Scamb	io ionico	>>	577
	7.9.1.	Applicazioni pratiche dello scambio ionico	>>	578
7.10.		menti a membrana	>>	579
	7.10.1.	Materiali e struttura delle membrane	>>	580
	7.10.2.	Parametri che caratterizzano le prestazioni di una membrana	>>	584
	7.10.3.	Aspetti pratici nell'uso delle membrane	>>	585
7.11.	Altri tı	rattamenti	>>	586
	7.11.1.	Stripping	>>	586
		Evaporazione e distillazione	>>	588
		Estrazione con solventi	>>	590
	7.11.4.	Rottura emulsioni oleose	>>	590
	7.11.5.	Controllo delle schiume	>>	591
		Elettrodialisi	>>	592
7.12.		grafia	>>	592
8. Tr	attamen	iti biologici alternativi		
8.1.	Cenni	introduttivi	>>	595
8.2.	Gli im	pianti SBR	>>	595
	8.2.1.	Generalità e descrizione delle diverse fasi operative	>>	595
	8.2.2.	Dimensionamento di un sistema SBR per la rimozione della sola frazione		
		carboniosa	>>	600
	8.2.3.	Dimensionamento di un sistema SBR per la rimozione della frazione		
		carboniosa e dell'azoto	>>	606
	8.2.4.	Particolarità costruttive degli impianti SBR	>>	613
8.3.	Gli im	pianti MBR	>>	615
		Generalità	>>	615
		Descrizione dei principali moduli utilizzati sul mercato	>>	621
		8.3.2.1. Zenon	>>	621
		8.3.2.2. <i>Kubota</i>	>>	622
		8.3.2.3. Mitsubishi Rayon	>>	623
		8.3.2.4. <i>X-Flow</i>	>>	623
		8.3.2.5. <i>Toray</i>	»	623
	8.3.3.	Dimensionamento di un sistema MBR per la rimozione della frazione		020
	0.0.0.	carboniosa e per il controllo dei composti dell'azoto	>>	624
8.4.	Gli im	pianti MBBR	<i>"</i>	631
J.T.			//	0.51
			<i>)</i> /	631
	8.4.1.	Generalità	» »	631 635
			» »	631 635

0.5	O1: ·			(10
8.5.		pianti SBBGR: un'innovativa soluzione per la depurazione delle acque	»	640
	8.5.1.	Cenni introduttivi	»	640
	8.5.2.	0 1	»	642
0.6	8.5.3.	Applicazioni della tecnologia SBBGR	»	644
8.6.	_	i numerici	»	647
	8.6.1.	1		C 15
	8.6.2.	per la rimozione della frazione carboniosa Esempio numerico sul dimensionamento di un impianto SBR per la	>>	647
		rimozione della frazione carboniosa e il controllo dei composti dell'azoto.	»	651
	8.6.3.	Esempio numerico sul dimensionamento di un impianto MBR per la rimoziono	е	
		della frazione carboniosa e il controllo dei composti dell'azoto	>>	657
8.7.	Biblios	grafia	>>	662
		~		
9. Tra	ttamen	iti di affinamento		
9.1.		introduttivi	>>	665
9.2.	_	ione	»	665
	9.2.1.		»	667
	J.2.11.	9.2.1.1. Principi di funzionamento	»	667
		9.2.1.2. Tipologie di filtri	»	670
		9.2.1.3. Dimensionamento di massima di un filtro a sabbia a flusso	"	070
		discendente	»	675
		9.2.1.4. Particolarità costruttive di un filtro a flusso discendente	<i>"</i>	676
	9.2.2.		<i>"</i>	684
9.3.		pimento su carboni attivi	<i>"</i>	686
9.3.	9.3.1.	Isoterme di adsorbimento	<i>"</i>	686
	9.3.1.	9.3.1.1. Valutazione di laboratorio dell'adsorbimento di un refluo reale	» »	687
	022			689
	9.3.2.	Proprietà del carbone attivo	>>	
	9.3.3.	Tipi commerciali di carbone attivo e modalità di impiego	»	690
	9.3.4.	Dinamiche dell'adsorbimento in colonna	>>	692
	9.3.5.	Rigenerazione del carbone attivo	»	695
0.4	9.3.6.	Dimensionamento di un sistema di filtri per colonne in serie	»	696
9.4.	_	i numerici	>>	700
	9.4.1.	Dimensionamento di un sistema di filtri monostrato in sabbia		
		per il trattamento terziario di reflui urbani	>>	700
9.5.	Bibliog	grafia	»	702
10 T	1			
	disinfo			700
10.1.		introduttivi	>>	703
10.2.		essi di disinfezione per la depurazione delle acque reflue	»	704
10.3.		ezione con agenti chimici	»	707
		Disinfezione con ipoclorito di sodio (NaClO)	»	707
		Disinfezione con cloro gas	>>	709
		Disinfezione con biossido di cloro (CIO ₂)	»	712
		Disinfezione con acido peracetico (PAA)	>>	716
		Disinfezione con ozono	»	717
		Altri disinfettanti chimici	»	720
	10.3.7.	Il dimensionamento di un'unità di disinfezione con agenti		
		chimici disinfettanti	»	720
	10.3.8.	Verifica dell'efficacia dei processi di disinfezione chimica		
		e comparazione tra i vari disinfettanti	>>	722

 :	

10.4.	Disinfezione con agenti fisici	>>	7
	10.4.1. Disinfezione con radiazione ultravioletta (UV)	>>	7
10.5.	Particolarità costruttive di un'unità di disinfezione	>>	7
10.6.	La declorazione	>>	7
10.7.	Il controllo dei sottoprodotti della disinfezione (DBPs)	>>	7
0.8.	Comparazione tra metodi di disinfezione	>>	7
10.9.	Esempi numerici	>>	7
	10.9.1. Esempio numerico sul dimensionamento del sistema di disinfezione		
	con acido peracetico di un impianto di depurazione per acque reflue urbane	>>	7
0.10.	Bibliografia	>>	7
	oduzione, caratterizzazione e trattamento dei fanghi di depurazione		_
1.1.	Cenni introduttivi	>>	7
1.2.	Caratterizzazione dei fanghi	>>	7
1.3.	Caratterizzazione quantitativa	>>	7
1.4.	Caratterizzazione qualitativa	»	
1.5.	La produzione di fanghi da trattamenti primari	>>	
1.6.	La produzione di fanghi da trattamenti biologici	>>	
1.7.	La produzione di fanghi da trattamenti chimico-fisici	>>	
1.8.	Trattamenti comuni a tutti i tipi di fango	>>	
	11.8.1. Ispessimento	>>	,
	11.8.1.1. Ispessimento a gravità per co-sedimentazione	>>	
	11.8.1.2. Ispessimento a gravità con vasca dedicata	>>	
	11.8.1.3. Ispessimento per flottazione	>>	-
	11.8.1.4. Ispessimento per addensamento dinamico	>>	,
	11.8.1.5. Ispessimento su nastri a gravità	>>	1
	11.8.1.6. Criteri di scelta	>>	-
	11.8.2. Disidratazione	>>	7
	11.8.2.1. Centrifughe	>>	7
	11.8.2.2. Filtropresse a camera	>>	7
	11.8.2.3. Nastropresse	>>	7
	11.8.2.4. Letti di essiccamento	>>	7
	11.8.2.5. Sacchi drenanti	>>	7
	11.8.2.6. Il condizionamento chimico del fango per la disidratazione	»	7
	11.8.2.7. Considerazioni sui criteri di scelta dell'unità di disidratazione.	>>	7
	11.8.3. Essiccamento termico	>>	7
1.9.	Trattamento dei fanghi	>>	8
	11.9.1. Trattamento dei fanghi primari	>>	8
	11.9.2. Trattamento dei fanghi biologici		8
	11.9.3. Trattamento dei fanghi da processi chimico-fisici	»	8
1.10.	Sistemi per il contenimento della produzione dei fanghi	»	8
- /	11.10.1. Stabilizzazione aerobica	»	8
	11.10.1.1. Dimensionamento della digestione aerobica semplice senza	.,	
	ispessimento simultaneo	»	8
	11.10.1.2. Dimensionamento della digestione aerobica con ispessimento	"	
	simultaneo	>>	8
	11.10.1.3. Alcune considerazioni sulle vasche di digestione aerobica	<i>»</i>	{
	11.10.2.Stabilizzazione chimica (alcalinizzazione)		8
	11.10.2. Stabilizzazione cinnica (alcanilizzazione)	» »	
	11.10.5. Ozolitzazione	"	8

	1.10.5.ATAD	818
	11.10.6. Elettrocompostaggio»	010
	11.10.7. Sistema Cannibal®	820
11.11.	Esempi numerici	
	11.11.1. Esempio numerico sul dimensionamento di un ispessitore a gravità »	
	11.11.2. Esempio numerico sul dimensionamento di uno stabilizzatore aerobico »	000
	11.11.3. Esempio numerico sul dimensionamento di un sistema di filtropresse	020
	per fanghi prodotti da un impianto di depurazione per reflui urbani	828
	11.11.4. Esempio numerico sul dimensionamento di un sistema di nastropresse	020
	per fanghi prodotti da un impianto di depurazione per reflui urbani »	831
	11.11.5. Esempio numerico sul dimensionamento dei letti di essiccamento	0.51
	per la disidratazione naturale dei fanghi prodotti da un impianto	
	di depurazione per reflui urbani	833
11 12	Bibliografia»	00.4
11.12.	Jidhogiana	. 054
12. St	bilizzazione anaerobica dei fanghi e recupero energetico	
12.1.	Cenni introduttivi »	837
12.2.	Digestione anaerobica »	837
	2.2.1. Il ruolo della temperatura nella digestione anaerobica	838
	2.2.2. Metabolismo batterico	0.40
	2.2.3. Fasi della digestione	0.41
	2.2.4. Condizioni operative e parametri di processo	0.40
	12.2.4.1. Parametri di gestione»	0.40
	12.2.4.2. Parametri di processo	0.45
	12.2.5. Inibizione e tossicità	0.40
	2.2.6. Principali modalità di digestione anaerobica	0.40
	12.2.6.1. Digestione a singolo stadio psicrofila (digestione fredda)	0.40
	12.2.6.2. Digestione a singolo stadio psicrolla (digestione fredda)	851
	12.2.6.3. Digestione a doppio stadio riscardata	0.70
	12.2.6.4. Digestione separata	0.50
	12.2.6.5. Digestione a due stadi con ricircolo	054
	10.0 4 6 7 7	054
	10.0 (7.17)	050
		0.55
	12.2.6.8. Digestione con fasi acidogena e metanigena separate	0.55
		0.60
	10.07.0 Di di ci	0.60
		0.5
		. 603
	12.2.7.4. Digestione mesofila a doppio stadio, ad alto carico senza	867
	ricircolo dei fanghi	007
	1 . 6 . 1 .	867
	with the standard of the stand	. 607
	per il riscaldamento	868
	12.2.8.1. Stima della produzione di biogas	0.00
	12.2.8.1. Stima della produzione di biogas	070
	12.2.8.3. Stima del fabbisogno di calore per il riscaldamento	0-4
	12.2.9. Rendimento della digestione, produzione e qualità del surnatante,	0/1
	produzione teorica del fango digerito	875
	produzione teorica dei fango digerito	013

Indice

	12.2.9.1. Rendimento della digestione	>>	875
	12.2.9.2. Produzione e qualità del surnatante	>>	876
	12.2.9.3. Produzione teorica del fango digerito	>>	878
	12.2.10. Modalità realizzative e particolari costruttivi	>>	878
	12.2.10.1. Tipologie di digestori	>>	878
	12.2.10.2. Tipologie di coperture dei digestori	>>	880
	12.2.10.3. Dispositivi di miscelazione	>>	881
	12.2.10.4. Dispositivi di riscaldamento	>>	885
	12.2.10.5. Dispositivi per lo stoccaggio del biogas	>>	886
	12.2.10.6. Dispositivi per il trattamento del biogas	»	890
	12.2.10.7. L'equipaggiamento dei digestori	>>	899
	12.2.11. Utilizzazione del biogas	>>	902
	12.2.12. Cenni sulla produzione di idrogeno	»	902
	12.2.13. Esempi di realizzazioni	»	903
	Incenerimento	>>	909
	Gassificazione e pirolisi	>>	909
12.5.	Esempi numerici	>>	909
	12.5.1. Esempio numerico di dimensionamento di un digestore psicrofilo		000
	monostadio in un impianto di depurazione per reflui urbani	>>	909
	12.5.2. Esempio numerico di dimensionamento di un digestore mesofilo		010
10.6	monostadio in un impianto di depurazione per reflui urbani	>>	912
12.6.	Bibliografia	>>	918
13. La	a depurazione delle acque di piccole comunità		
13.1.		»	921
13.2.	Fosse settiche	»	924
	13.2.1. Principio di funzionamento e caratteristiche descrittive	>>	924
	13.2.2. Impiego delle fosse settiche	>>	927
	13.2.3. Dimensionamento, produzione di fango ed efficienza depurativa	>>	930
13.3.	Vasche Imhoff	»	933
	13.3.1. Principio di funzionamento e caratteristiche descrittive	>>	933
	13.3.2. Dimensionamento, produzione di fango ed efficienza depurativa	»	937
13.4.	La dispersione sotto la superficie del terreno	>>	937
	13.4.1. Trincee di sub-irrigazione	>>	938
	13.4.1.1. Principio di funzionamento, caratteristiche descrittive		
	e costruttive	>>	938
	13.4.1.2. Criteri di dimensionamento	>>	943
	13.4.2. I filtri a sabbia sotterranei e i cumuli assorbenti	>>	946
	13.4.3. I pozzi disperdenti	»	948
	13.4.4. La subirrigazione a goccia	>>	949
	13.4.4.1. Principio di funzionamento e caratteristiche descrittive	»	949
	13.4.4.2. Criteri di dimensionamento	>>	951
	13.4.5. La sub-irrigazione con drenaggio per terreni impermeabili	»	954
13.5.	Trattamenti biologici	»	956
	13.5.1. Trattamenti a fanghi attivi	>>	956
	13.5.1.1. Ossidazione totale	»	956
	13.5.1.2. Reattori a membrana (MBR)	>>	958
	13.5.1.3. Sistema SBR	>>	959
	13.5.2. Trattamenti a colture adese	>>	960
	13.5.2.1. Letti percolatori	»	960
	13.5.2.2. Dischi biologici	>>	961

13.0.	Trattamenti naturali	>>	962
	13.6.1. Fitodepurazione	>>	962
	13.6.1.1. Le macrofite e il loro ruolo negli impianti di fitodepurazione	>>	963
	13.6.1.2. Meccanismi di rimozione degli inquinanti	>>	965
	13.6.1.3. Configurazioni impiantistiche	>>	966
	13.6.1.4. Schemi di processo	>>	971
	13.6.1.5. Criteri di progettazione di impianti di fitodepurazione		
	a flusso sub-superficiale	>>	972
	13.6.1.6. Criteri di progettazione di impianti di fitodepurazione	,,	- , -
	a flusso superficiale (FWS)	»	979
	13.6.1.7. Gestione degli impianti di fitodepurazione	"	981
	13.6.2. Stagni biologici (lagunaggio naturale)	<i>»</i>	981
		<i>»</i>	983
	13.6.2.1. Stagni facoltativi	>>	
	13.6.2.2. Stagni anaerobici	>>	985
	13.6.2.3. Stagni aerobici	>>	987
	13.6.2.4. Stagni di finissaggio	»	987
13.7.	Disinfezione	>>	988
13.8.	0	>>	988
13.9.	1 1 1	>>	989
13.10.	Esempi numerici	>>	992
	13.10.1. Esempio numerico di dimensionamento di una fossa settica a servizio		
	di un'abitazione isolata e nell'ipotesi di scarico dell'effluente trattato		
	in un corpo idrico superficiale	>>	992
	13.10.2. Esempio numerico di dimensionamento di un sistema fossa		
	settica-subdispersione sul suolo per il trattamento del refluo civile		
	prodotto da un'abitazione isolata	>>	994
13.11.	Bibliografia	»	996
14. As	spetti economici dei sistemi di depurazione		
14.1.		>>	999
14.2.		»	999
1	14.2.1. Generalità	>>	999
	14.2.2. Costi di un sistema di depurazione	<i>"</i>	1000
	14.2.3. Costo di costruzione	<i>"</i>	1002
	14.2.4. Costo di adeguamento o potenziamento	"	1002
	14.2.5. Costo di esercizio degli impianti		1004
			1005
	14.2.5.1. Personale operativo		
	14.2.5.2. Personale tecnico-direttivo		1006
	14.2.5.3. Energia elettrica		1007
	14.2.5.4. Reagenti impiegati nel processo		1008
	14.2.5.5. Trasporto e smaltimento dei fanghi e dei materiali di risulta	>>	1009
	14.2.5.6. Manutenzione delle opere	>>	1010
	14.2.5.7. Maggiori costi per le integrazioni impiantistiche	>>	1012
	14.2.5.8. Spese generali	>>	1013
	14.2.5.9. Confronto tra i costi di costruzione e i costi di esercizio	>>	1014
	14.2.6. Ricavi di gestione	>>	1014
14.3.	Rassegna dei costi di depurazione – Indagine condotta da Sudgest	>>	1015
14.4.	Il confronto economico tra diverse soluzioni impiantistiche	>>	1019
	14.4.1. Valutazione dei costi di costruzione e di gestione	>>	1020
	14.4.2. L'attualizzazione dei costi di gestione e di manutenzione straordinaria	»	1021

Indice

	14.4.3. Trasformazione dei costi di costruzione iniziali e dei costi		
	di manutenzione straordinaria in costi annuali	>>	1022
14.5.	Procedura di ottimizzazione dei costi del personale di enti che gestiscono		
	piccoli impianti di depurazione	>>	1023
	14.5.1. Esempio di applicazione della procedura di ottimizzazione dei costi		
	del personale di enti che gestiscono piccoli impianti di depurazione	>>	1028
14.6.	Esempi numerici	>>	1038
	14.6.1. Determinazione del costo di costruzione	>>	1038
	14.6.2. Determinazione del costo di esercizio	>>	1039
	14.6.2.1. Costo del personale	»	1039
	14.6.2.2. Costo dell'energia elettrica (CEE)	»	1039
	14.6.2.3. Costo dei reagenti di processo (Creag)	»	1039
	14.6.2.4. Costo del trasporto e dello smaltimento fanghi e materiali		
	di risulta	>>	1040
	14.6.2.5. Costo della manutenzione delle opere	»	1041
	14.6.3. Confronto dei costi	>>	1042
14.7.	Bibliografia	>>	1042
15. As	spetti gestionali dei sistemi di depurazione		
15.1.		»	1043
15.2.	La gestione degli impianti di depurazione	>>	1043
	15.2.1. Conduzione del processo		1045
	15.2.1.1. Trattamenti preliminari		1045
	15.2.1.2. Trattamenti primari		1045
	15.2.1.3. Trattamenti secondari biologici		1046
	15.2.1.4. Trattamenti chimico-fisici	>>	1046
	15.2.2. Gestione degli odori		1047
	15.2.2.1. Controllo degli odori con mezzi chimici		1047
	15.2.3. Efficienza energetica e controlli automatici	»	1049
	15.2.3.1. Swater® Acque Industriali: software integrato		
	per la simulazione/verifica/upgrading di impianti		
	di depurazione delle acque reflue industriali e urbane		1050
	15.2.4. Potenziamento delle prestazioni impiantistiche		1053
	15.2.5. Contenimento della produzione di fanghi		1054
	15.2.6. Controlli periodici e straordinari	>>	1055
	15.2.6.1. Sistema esperto di gestione MICROExpert®, software tool		
	diagnostico sui problemi di sedimentabilità dei fanghi attivi		1057
15.3.	Bibliografia	»	1058
46.0			
	asi studio e trattamenti innovativi di acque reflue industriali		1050
16.1.	Cenni introduttivi	>>	1059
16.2.	La depurazione dei reflui provenienti da impianti di produzione del biodiesel		1070
	mediante una transesterificazione basica	>>	1060
	16.2.1. Il ciclo di produzione del biodiesel: esperienze pregresse e caratterizzazione		1070
	del refluo influente		1060
	16.2.2. La descrizione dell'impianto di depurazione oggetto di studio		1064
	16.2.3. La descrizione delle modalità di prova		1065
	16.2.4. Risultati ottenuti	>>	1067
	combinato e del chimico-fisico di monte		1067
	Comomato e dei chimico-nsico di monte	"	1007

	16.2.4.2. Il rendimento depurativo del sistema a letti percolatori		1069
	16.2.4.4. Il rendimento depurativo del sistema a osmosi inversa		
	con membrane a spirale		1074
	16.2.5. Principali conclusioni		1074
16.3.	1 1 1 1 66		1075
16.4.	1 1 1	>>	1080
16.5.	1 11		
	"Two Phase Partitioning Bioreactors" in fase liquido-liquido e liquido-solido.		1082
16.6.	Bibliografia	»	1084
17. No	ormative e procedure sulle acque reflue		
17.1.			1085
17.2.	La normativa antecedente al 1976	»	1086
17.3.	La legge 319 del 1976	»	1087
17.4.			1091
17.5.	Il D.Lgs. 152 del 2006	»	1093
	17.5.1. Struttura del decreto	»	1093
	17.5.2. La Parte Terza (III)	»	1093
	17.5.3. Le principali "definizioni" della Sezione II (Tutela delle acque		
	dall'inquinamento) della Parte Terza	»	1098
	17.5.4. Gli Allegati alla Parte Terza		1100
	17.5.4.1. Allegato 1 "Monitoraggio e classificazione delle acque		
	in funzione degli obiettivi di qualità ambientale"	×	1100
	17.5.4.2. Allegato 2 "Criteri per la classificazione dei corpi idrici		
	a destinazione funzionale"	×	1100
	17.5.4.3. Allegato 3 "Rilevamento delle caratteristiche dei bacini		
	idrografici e analisi dell'impatto esercitato dall'attività		
	antropica" e Allegato 4 "Contenuto dei piani"	X	1101
	17.5.4.4. Allegato 5 "Limiti di emissione per gli scarichi idrici"		1101
	e disciplina degli scarichi	X	1103
	17.5.4.5. Allegato 6 "Criteri per l'individuazione delle aree sensibili"		1100
	e Allegato 7 "Zone vulnerabili ai nitrati di origine agricola		
	ed ai prodotti fitosanitari"	Y	1113
	17.5.4.6. Procedure amministrative		1113
17.6.			1117
17.0.			1117

PREMESSA

Tutte le attività antropiche generano sottoprodotti che devono essere opportunamente gestiti e trattati prima di essere restituiti all'ambiente (si legga smaltiti) in condizioni di assoluta sicurezza per la salute pubblica e la salvaguardia degli ecosistemi. Le problematiche relative al trattamento e allo smaltimento delle acque reflue nel corso degli ultimi decenni hanno acquisito una rilevanza che ormai travalica l'ambito tecnico. La gestione dei reflui, di origine sia urbana sia industriale, deve seguire un approccio sistemico, al passo con la crescente domanda di benessere, da una parte, e una maggiore consapevolezza dei danni arrecati all'ambiente dalle pressioni antropiche, che si concretizza in vincoli normativi sempre più restrittivi, dall'altra. La sostenibilità passa attraverso strategie che indichino come combinare i mezzi a disposizione ovvero come progettare e gestire al meglio gli impianti per il trattamento e lo smaltimento delle acque reflue. Da qui nasce l'esigenza di scrivere il presente volume che, nelle intenzioni degli autori, vuole offrire un contributo concreto a quanti, a vario titolo e per le più disparate ragioni, già si occupano o si vogliono occupare di acque reflue: progettisti, gestori, consulenti, enti di controllo, studenti, ecc.

Un celebre aforisma di Albert Einstein recita: "La teoria è quando si sa tutto ma non funziona niente. La pratica è quando funziona tutto ma non si sa il perché. In ogni caso si finisce sempre con il coniugare la teoria con la pratica: non funziona niente e non si sa il perché". Tra la teoria e la pratica, gli autori prospettano una "terza via": la "teopratica", in ossequio alla quale, funziona quasi tutto, raramente non si sa il perché e quando una cosa non funziona o non se ne conosce il perché, ci si può mettere intorno a un tavolo per studiare il problema, magari con l'ausilio di un testo di agevole consultazione, contenente una trattazione sistematica, che offre spunti di riflessione e di ragionamento utili a trovare la soluzione del problema allo studio. Il presente testo è dedicato alle acque reflue, il cui studio è affrontato con riferimento ai seguenti argomenti: le caratteristiche quali-quantitative, l'impostazione dello schema di processo, i trattamenti preliminari, primari, secondari e terziari a biomassa sospesa e adesa, i trattamenti chimico-fisici, i trattamenti biologici alternativi, i trattamenti di affinamento, la disinfezione, la caratterizzazione e il trattamento dei fanghi di depurazione, la depurazione delle acque di piccole comunità, gli aspetti economici e gestionali dei sistemi di depurazione, i casi studio e i trattamenti innovativi, la normativa e le procedure amministrative.

Gli autori

XXIII

PRESENTAZIONE

Nella Regione Campania, in questo momento, più che altrove, si percepisce come la qualità della vita e il destino di un luogo siano strettamente connessi a quelli dell'ambiente. L'emergenza rifiuti diventata cronica e una storica mancanza di depurazione hanno portato più volte la Regione alla ribalta della cronaca. Contaminato il suolo, contaminato il mare, pochi ormai, anche tra i suoi abitanti, quasi ricordano che c'è stato un tempo in cui la Campania è stata *felix*. Eppure oltre i rifiuti che riemergono sistematicamente per le strade di Napoli, oltre le ferite inferte a una terra disseminata di discariche abusive, da chi ha pensato che nascondendoli alla vista, prima o poi, di quei rifiuti la coscienza si sarebbe potuta dimenticare, proprio in Campania si respira forte l'anelito di un territorio intento a riappropriarsi della sua originaria identità. In questo percorso di recupero della qualità ambientale, il trattamento appropriato delle acque reflue e l'ottimizzazione della gestione dei rifiuti solidi rivestono un ruolo di assoluta e preminente importanza. A questi due temi, estremamente attuali, dell'Ingegneria sanitaria ambientale, è dedicato il lavoro degli studiosi campani De Feo, De Gisi e Galasso.

Quali sono le informazioni necessarie per un'appropriata progettazione degli impianti di depurazione delle acque reflue, come impostare correttamente gli schemi di processo, quali unità di depurazione risultano più adeguate in determinate condizioni di carico? A queste, che sono le prime problematiche con le quali, concretamente, si confrontano i progettisti, gli autori si propongono di rispondere con un approccio estremamente pratico, che si sostanzia dell'esperienza degli stessi, senza trascurare le basi teoriche dei processi depurativi. Lo stato dell'arte nella depurazione delle acque reflue è ampiamente descritto nel testo, in particolar modo nei contributi in cui sono condivisi risultati di ricerca, che hanno già trovato riscontro a livello internazionale. Un aspetto di grande interesse è rilevato nel continuo confronto con il mondo delle imprese costruttrici d'impianti di depurazione che ha consentito l'approfondimento, in termini di dimensionamento e di efficienza, di tecnologie consolidate e innovative sempre più frequentemente applicate su scala reale.

Il trattamento del percolato, che pure costituisce un argomento di estrema attualità, è un altro dei temi affrontati, con riferimento a un impianto di compostaggio. Più in generale, il trattamento delle acque reflue industriali viene discusso attraverso la presentazione di specifici casi studio, che creano una base di esperienza per il tecnico nuovo al problema. L'annosa questione della gestione dei fanghi di depurazione e dei processi necessari a minimizzarne gli impatti sull'ambiente è affrontata con un approccio innovativo, che interpreta i più recenti studi condotti nel settore e si propone di orientare le strategie di trattamento verso la sostenibilità economica ed ambientale. Poiché, tuttavia, gli stessi autori sono consapevoli che la corretta realizzazione degli impianti di depurazione delle acque reflue costituisce solo il primo passo per la tutela dell'ambiente idrico, essi affrontano, in modo dedicato, gli aspetti economici e gestionali degli impianti di depurazione, raccogliendo, in tal senso, le esigenze dei gestori. Un excursus normativo chiude il testo, ponendosi come un riferimento operativo per l'attuazione delle procedure amministrative previste dal Codice dell'Ambiente (D.Lgs. 152/2006).

Mentre gli impianti di trattamento di reflui e rifiuti stentano a trovare collocazione e spesso risorse, la loro realizzazione e la corretta gestione costituiscono la sfida per l'attuazione dello sviluppo sostenibile del territorio e, nel caso della Campania, per la sua rinascita.

1. LE CARATTERISTICHE DELLE ACQUE REFLUE

11 Cenni introduttivi

L'avvento delle moderne opere di collettamento idraulico (acquedotti e fognature), aumentando in maniera più che significativa la disponibilità di acqua per i più svariati usi (zootecniche, industriali, commerciali, domestiche, ecc.) ha finito per concentrare le acque di risulta in scarichi di tipo puntuale. Accanto a un aumento quantitativo delle acque reflue, pertanto, si è prodotta anche una loro concentrazione nello spazio, con conseguente esaltazione dei fenomeni di inquinamento. L'incedere del progresso ha, gradualmente, modificato anche la composizione qualitativa delle acque reflue, accrescendo ulteriormente l'impatto degli scarichi idrici sull'ambiente. È un esempio emblematico il vecchio sapone da bucato che un tempo veniva realizzato a partire da sali sodici di acidi grassi naturali, facilmente biodegradabili, sostituiti nel tempo con tensioattivi di sintesi di varia natura.

In quest'ottica, il primo passo per il risanamento dell'ambiente idrico è legato al monitoraggio e alla definizione delle caratteristiche qualitative e quantitative dei reflui, al fine di identificarne il trattamento appropriato. Questa impostazione trova ampio riscontro nella stessa normativa vigente (D.Lgs. 152/2006) che si orienta verso il recupero della qualità dei corpi idrici, indicando come scala appropriata quella di bacino e individuando un unico gestore per il servizio idrico integrato.

Oltre alle acque di risulta delle varie attività umane, domestiche e/o industriali, ai fini di una valutazione complessiva dell'inquinamento, occorre tenere conto delle acque meteoriche, in particolare di quelle di prima pioggia, nonché delle acque scolanti da aree produttive, in particolar modo agricole, in quanto capaci di apportare inquinanti di vario genere.

Sulla base degli obiettivi di qualità definiti dal legislatore e individuati, al contempo, gli impatti ambientali attesi sul corpo idrico ricettore, sarà possibile definire l'entità degli interventi tecnologici, necessari a garantire la tutela dell'ambiente e quella della vita umana, consistenti nella costruzione di nuovi impianti o nell'*upgrading* di impianti esistenti.

Il livello di efficienza impiantistico sarà, quindi, funzione dello stato di qualità del corpo idrico, degli obiettivi di qualità prefissati e dell'impatto complessivo dei reflui, anche quello legato alle sorgenti non puntiformi. Per esempio, in un bacino idrico con aree destinate ad agricoltura intensiva e, quindi, già produttrici di impatti conseguenti al rilascio di nutrienti dai suoli, sarà necessario porre attenzione all'eventuale rilascio di ulteriori aliquote di nutrienti da parte degli impianti di depurazione. La progettazione e la gestione di questi ultimi dipende, infine, proprio dalle caratteristiche quali-quantitative delle acque reflue, oltre che dagli obiettivi di qualità finale del corpo idrico.

1.2. L'inquinamento idrico

L'inquinamento idrico si può considerare come un'alterazione di un ecosistema acquatico, a seguito dell'immissione di sostanze che per quantità e/o qualità ne modificano una o più carat-

teristiche, pregiudicandone gli usi. L'inquinamento idrico può essere classificato in relazione alle sorgenti da cui trae origine o in base alle caratteristiche delle sostanze immesse, ovvero in base alla tipologia di contaminanti.

In base all'origine, si possono distinguere le tre seguenti forme di inquinamento idrico:

- originato da acque reflue urbane;
- originato da acque reflue industriali;
- originato da acque reflue agricole e zootecniche.

In base alle caratteristiche degli inquinanti si possono distinguere, invece, le seguenti forme di inquinamento idrico:

- da sostanze organiche naturali e biodegradabili;
- da sostanze inorganiche tossiche;
- da sostanze inorganiche indesiderabili in concentrazioni elevate;
- da sostanze organiche di sintesi o non facilmente biodegradabili;
- da solidi sospesi;
- da sostanze che modificano il pH;
- termico;
- microbiologico.

Per poter definire sia l'origine che la tipologia dell'inquinamento, occorre procedere alla caratterizzazione analitica delle acque reflue. Le metodiche analitiche di riferimento sono riportate nei manuali e nelle raccolte dei metodi ufficiali, a cui si rimanda per gli approfondimenti.

1.2.1. Classificazione dell'inquinamento in base all'origine

1.2.1.1. Inquinamento di origine urbana

Le acque reflue urbane contengono discrete quantità di sostanze organiche di origine naturale, facilmente biodegradabili, nonché composti dell'azoto e del fosforo, derivanti dal metabolismo umano.

L'inquinamento prevalente è, pertanto, legato alla richiesta di ossigeno di tali composti e al loro potere eutrofizzante. In aggiunta, nelle acque reflue urbane è presente una consistente carica microbica con possibile presenza di patogeni ed è, ormai, sempre più frequente rilevare la presenza di composti di sintesi quali, ad esempio, i tensioattivi, derivanti dai normali detergenti usati per l'igiene domestica. Infine, si possono individuare anche composti in tracce di varia origine (metalli pesanti e composti organici), che, tuttavia, in assenza di una componente industriale, presentano concentrazioni basse se non trascurabili.

1.2.1.2. Inquinamento di origine industriale

Quella di origine industriale è una forma di inquinamento idrico estremamente variegata, essendo fortemente dipendente dalla natura delle aziende che la generano e dai differenti cicli di processo che possono essere impiegati anche nella stessa tipologia di aziende. Nelle acque reflue industriali possono essere presenti sostanze che alterano il pH o il contenuto salino, sostanze organiche biodegradabili o non biodegradabili, metalli pesanti e composti anche a elevata tossicità.

In taluni casi, le acque reflue industriali possono essere trattate insieme alle acque reflue domestiche, mentre, in altri, richiedono specifici pretrattamenti prima dell'immissione in fognatura. Altre volte, infine, si può ricorrere anche a trattamenti a piè di fabbrica, del tutto autonomi ed espressamente dedicati.

1.2.1.3. Inquinamento di origine agricola o zootecnica

Nel caso dell'inquinamento idrico di origine agricola o zootecnica, la contaminazione delle acque è principalmente dovuta alla presenza di sostanze organiche naturali e composti dell'azoto e del fosforo, come nei reflui urbani. A differenza di questi ultimi, tuttavia, i reflui di origine agricola e zootecnica si caratterizzano per un carico inquinante più elevato, con particolare riferimento, ovviamente, alle forme dell'azoto organico e ammoniacale. Tra gli inquinanti non facilmente biodegradabili, invece, possono essere presenti residui di fitofarmaci o di farmaci a uso veterinario. Un ulteriore carico inquinante può derivare dall'uso dei concimi chimici che contribuiscono a forme di inquinamento diffuso e non puntuale.

1.2.2. Classificazione dell'inquinamento in funzione degli inquinanti

1.2.2.1. Sostanze organiche naturali

La presenza di sostanze organiche naturali è tipica delle acque reflue urbane, delle acque reflue di origine zootecnica e delle acque reflue dell'industria agroalimentare. Tali sostanze sono facilmente biodegradabili, ma presentano un'elevata richiesta di ossigeno per poter essere degradate.

L'immissione di scarichi contenenti elevate concentrazioni di sostanza organica nella sezione di un corso d'acqua determina un certo consumo di ossigeno disciolto (*C*), in quanto i composti organici subiscono un processo di ossidazione biologica. Contestualmente al consumo di ossigeno legato all'ossidazione biologica della sostanza organica, nei corpi idrici avviene un naturale processo di riossigenazione, con dissoluzione di nuovo ossigeno in acqua, per effetto dello scambio con l'atmosfera. In casi limite, se la riossigenazione non è sufficiente a compensare il consumo di ossigeno, si possono determinare condizioni anaerobiche (assenza di ossigeno disciolto) per tratti del corso d'acqua a valle degli scarichi. La presenza di adeguate concentrazioni d'ossigeno disciolto è fondamentale per la sopravvivenza dei pesci e delle altre specie acquatiche. La tabella 1.1 riporta i valori delle concentrazioni minime di ossigeno necessarie per la sopravvivenza delle principali specie ittiche.

Tabella 1.1. Valori limite dell'ossigeno disciolto (C) per la sopravvivenza delle specie ittiche

C (mg/l)	Specie ittiche					
5	pecie ittiche più pregiate (ad esempio i salmonidi)					
4	Gran parte delle specie ittiche					
2	Specie ittiche meno pregiate e maggiormente resistenti alla carenza di ossigeno					

Il numero e la varietà di specie ittiche presenti in un corso d'acqua cambiano drasticamente nei punti a valle dello scarico dei reflui. Un minor numero di specie ittiche è in grado di sopravvivere in corsi d'acqua inquinati: le specie, per così dire, "superstiti" avendo abbondanza di cibo, per effetto delle sostanze nutrienti contenute negli scarichi, si possono moltiplicare in gran numero. Il fenomeno di deossigenazione è efficacemente rappresentato attraverso la curva a sacco dell'ossigeno disciolto, anche detta curva di Streeter e Phelps o curva sag, riportata in figura 1.1. Il contenuto di ossigeno disciolto è confrontato con il valore di saturazione, cioè con la massima concentrazione di ossigeno in acqua per fissate condizioni di temperatura, pressione e salinità.

La variabilità della concentrazione di saturazione in acqua dell'ossigeno disciolto si può esprimere attraverso la legge di Henry:

$$p = H \cdot x \tag{1.1}$$

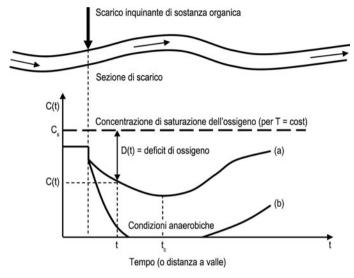


Figura 1.1. Possibili andamenti della curva della concentrazione di ossigeno disciolto in un corso d'acqua a valle del punto di immissione (*curva a sacco* o *curva sag*): a) senza condizioni anaerobiche; b) con condizioni anaerobiche (fonte: De Feo, 2008)

dove

p = pressione parziale dell'ossigeno nell'aria

H = coefficiente di Henry (dipendente dalla temperatura)

x = concentrazione di saturazione dell'ossigeno in acqua.

In tabella 1.2 sono riportati i valori della concentrazione di saturazione dell'ossigeno in acque dolci e salate, in funzione della temperatura e della salinità (espressa come concentrazione di cloruri) e gli stessi valori sono elaborati in figura 1.2.

Tabella 1.2. Concentrazione di saturazione dell'ossigeno in acque dolci e salate, in funzione della temperatura e della salinità (espressa come concentrazione di cloruri)

Temperatura (°C)	Concentrazione di cloruri (mg/l)					
	0	5000	10.000	15.000	20.000	
0,0	14,62	13,79	12,97	12,14	11,32	
1,0	14,23	13,41	12,61	11,82	11,03	
2,0	13,84	13,05	12,28	11,52	10,76	
3,0	13,48	12,72	11,98	11,24	10,5	
4,0	13,13	12,41	11,69	10,97	10,25	
5,0	12,80	12,09	11,39	10,7	10,01	
6,0	12,48	11,79	11,12	10,45	9,78	
7,0	12,17	11,51	10,85	10,21	9,57	
8,0	11,87	11,24	10,61	9,98	9,36	
9,0	11,59	10,97	10,36	9,76	9,17	

segue

Temperatura	Concentrazione di cloruri (mg/l)						
(°C)	0	5000	10.000	15.000	20.000		
10,0	11,33	10,73	10,13	9,55	8,98		
11,0	11,08	10,49	9,92	9,35	8,80		
12,0	10,83	10,28	9,72	9,17	8,62		
13,0	10,60	10,05	9,52	8,98	8,46		
14,0	10,37	9,85	9,32	8,80	8,30		
15,0	10,15	9,65	9,14	8,63	8,14		
16,0	9,95	9,46	8,96	8,47	7,99		
17,0	9,74	9,26	8,78	8,30	7,84		
18,0	9,54	9,07	8,62	8,15	7,70		
19,0	9,35	8,89	8,45	8,00	7,56		
20,0	9,17	8,73	8,30	7,86	7,42		
21,0	8,99	8,57	8,14	7,71	7,28		
22,0	8,83	8,42	7,99	7,57	7,14		
23,0	8,68	8,27	7,85	7,43	7,00		
24,0	8,53	8,12	7,71	7,30	6,87		
25,0	8,38	7,96	7,56	7,15	6,74		
26,0	8,22	7,81	7,42	7,02	6,61		
27,0	8,07	7,67	7,28	6,88	6,49		
28,0	7,92	7,53	7,14	6,75	6,37		
29,0	7,77	7,39	7,00	6,62	6,25		
30,0	7,63	7,25	6,86	6,49	6,13		

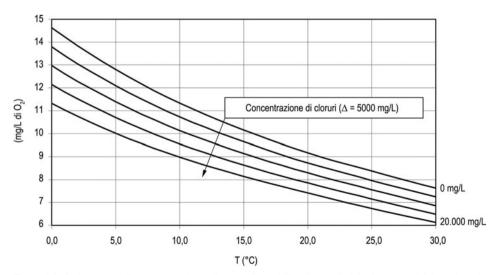


Figura 1.2. Andamento della concentrazione di saturazione dell'ossigeno disciolto in acque dolci e salate, in funzione della temperatura e della salinità (espressa come concentrazione di cloruri) (fonte: De Feo, 2008)

Per acque dolci alla temperatura di 20 °C (temperatura di riferimento) la concentrazione di saturazione è pari a 9,17 mg/l.

La differenza tra il valore della concentrazione in condizioni di saturazione (C_i) e il valore effettivo della concentrazione di ossigeno disciolto (C) fornisce il deficit di ossigeno (D). Per un generico istante t:

$$D(t) = C_{c} - C(t) \tag{1.2}$$

Per lo studio di dettaglio del fenomeno di deossigenazione e, in particolare, del modello di Streeter e Phelps si rimanda a De Feo (2008).

1.2.2.2. Sostanze inorganiche tossiche

Le sostanze inorganiche tossiche presenti nelle acque reflue sono costituite essenzialmente dai metalli pesanti che esplicano attività tossica specifica, più o meno spiccata, in funzione della specie in cui sono presenti (ad esempio, il cromo esavalente è più tossico del cromo trivalente), non sono biodegradabili e sono bioaccumulabili e, quindi, in grado di concentrarsi lungo la catena alimentare. Essi vengono rilasciati da numerose attività industriali, tra cui le attività minerarie e metallurgiche, alcune industrie chimiche e altre attività industriali quali, ad esempio, le concerie. Si evidenzia che il trattamento di acque contaminate da metalli pesanti richiede l'impiego di tecnologie ad hoc.

1.2.2.3. Sostanze inorganiche indesiderabili in quantità elevate

Con la dicitura sostanze inorganiche indesiderabili in quantità elevate si identificano le sostanze eutrofizzanti, quali i composti dell'azoto e del fosforo che, oltre a derivare dalla degradazione di sostanze organiche naturali, possono provenire da lavorazioni chimiche o dall'uso di fertilizzanti minerali. Ad esse, inoltre, occorre aggiungere solfati e cloruri che, in concentrazioni elevate, possono modificare la salinità dell'ambiente ricevente. Va sottolineato che tali sostanze non esplicano alcuna tossicità, in quanto sono già presenti nell'ambiente naturale, ma in concentrazioni elevate possono produrre alterazioni irreversibili, soprattutto negli ambienti particolarmente delicati, come ad esempio i corpi idrici a debole ricambio.

1.2.2.4. Sostanze organiche di sintesi

Le sostanze organiche di sintesi sono tutte le sostanze prodotte dalla moderna chimica organica. Tali sostanze sono spesso non facilmente biodegradabili. Alcune di esse, in particolare, si caratterizzano per un'elevata tossicità e per la possibile bioaccumulabilità. Tra le sostanze organiche di sintesi più ricorrenti nelle acque reflue si annoverano i solventi organici, i fitofarmaci, i tensioattivi, i coloranti, gli idrocarburi, ecc. La grande diffusione di queste sostanze anche nelle attività domestiche le ha rese degli inquinanti ubiquitari, rinvenibili anche in acque reflue urbane, seppur in modeste concentrazioni.

1.2.2.5. Solidi sospesi

I solidi sospesi presenti nei reflui possono essere di origine minerale (derivanti da attività estrattive o di lavorazione degli inerti) o di origine organica. In questo ultimo caso, poiché possono essere biodegradati, si fanno generalmente rientrare tra le forme di inquinamento dovute alla presenza di sostanze organiche biodegradabili, in quanto il principale effetto nell'ambiente ricevente è la sottrazione di ossigeno. Altri particolati sospesi possono derivare da scarichi contenenti metalli e, in questo caso, i solidi sospesi esplicano anche un'attività tossica specifica, che generalmente è dipendente dal pH dell'ambiente ricevente.

1.2.2.6. Sostanze che modificano il pH

Gli acidi e le basi forti, come ben noto, sono in grado di alterare il pH di un generico solvente. Questo, ovviamente, vale anche per il ricettore finale di uno scarico idrico (corso d'acqua, lago, refluo fognario, ecc.). Questa forma d'inquinamento richiede un attento monitoraggio, in quanto le alterazioni che produce sono potenzialmente in grado di bloccare i processi depurativi, provocare corrosioni e favorire la tossicità di altri contaminanti.

1.2.2.7. Inquinamento termico

L'inquinamento termico è causato da scarichi ad elevata temperatura, essenzialmente di origine industriale e può provocare alterazioni dei processi biologici naturali, favorire fenomeni settici nelle fognature e – soprattutto nel periodo estivo – può causare deficienze di ossigeno negli impianti di depurazione (si riduce la solubilità in acqua dell'ossigeno e contestualmente se ne aumenta la richiesta per l'attività biologica dei sistemi di ossidazione).

1.2.2.8. Inquinamento microbiologico

L'inquinamento microbiologico è essenzialmente legato agli scarichi urbani o zootecnici e può creare seri problemi di natura igienica, specialmente in caso di riutilizzo indiretto delle acque reflue in agricoltura. Questa forma d'inquinamento può risultare particolarmente pericolosa nel caso di acque reflue provenienti da ospedali o case di cura per malattie infettive che non effettuino un'adeguata disinfezione.

1.3. Caratterizzazione delle acque reflue

Le acque reflue sono normalmente classificate e caratterizzate in termini di carico inquinante con riferimento alle caratteristiche, fisiche, chimiche, microbiologiche e quantitative. Per la determinazione analitica dei parametri citati nel presente paragrafo si rimanda alle metodiche analitiche per le acque e le acque reflue:

- APAT, Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici, IRSA-CNR, Istituto di Ricerca Sulle Acque – Consiglio Nazionale delle Ricerche, Metodi analitici per le acque, Manuali e Linee Guida 29/2003, Roma, 2003;
- American Public Health Association (APHA), American Water Works Association (AWWA)
 & Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 21st Edition, 2005.

1.3.1. Caratteristiche fisiche

Le caratteristiche fisiche (temperatura, conducibilità elettrolitica, odore, colore) individuano le proprietà basilari delle acque reflue e costituiscono il primo approccio alla caratterizzazione. Alcune di queste misure devono essere eseguite in sito, poiché il trasporto del campione in laboratorio può alterarne i valori.

1.3.1.1. Temperatura

La temperatura di un refluo in ingresso a un impianto di depurazione dipende essenzialmente dalla temperatura delle acque recapitate in fognatura. Gli usi civili e industriali, infatti, possono richiedere l'uso di acque calde, successivamente convogliate in fognatura (quando non sono stoccate per successivi riutilizzi) con temperature superiori a quella ambiente. La temperatura di un refluo influenza la solubilità dell'ossigeno e la velocità delle reazioni biochimiche.

In particolare, essa può favorire l'instaurarsi di fenomeni di setticità nei periodi caldi, mentre può avere un effetto benefico sullo sviluppo e sul mantenimento delle reazioni di depurazione (in particolare sul processo di nitrificazione) nei periodi freddi. La determinazione della temperatura si può eseguire con normali termometri a mercurio o con quelli a termocoppia.

1.3.1.2. Colore

Una colorazione anomala dei reflui è indice di scarichi industriali e, in alcuni casi, può permanere anche dopo il trattamento depurativo. L'immissione di acque colorate nell'ambiente naturale può alterare la trasparenza dell'acqua e le reazioni di fotosintesi, per cui la normativa prevede che, allo scarico, il refluo non deve presentarsi colorato dopo una certa diluizione. Il colore costituisce un parametro di particolare interesse perché la sua immediata e semplice rilevabilità consente di avere un'informazione tempestiva sulla natura dei fenomeni in corso. Si pensi, ad esempio, alle situazioni di anomala colorazione che, semplicemente osservate affacciandosi da un ponte su un corso d'acqua, possono denunciare inequivocabilmente la presenza di scarichi industriali.

1.3.1.3. Odore

L'odore nei reflui può derivare da reazioni di fermentazione anaerobica (ammoniaca, idrogeno solforato, fosfine) o da scarichi industriali. La presenza di composti odorigeni provenienti da acque reflue già sottoposte a trattamento depurativo è generalmente indice di non corretta depurazione. Il tecnico esperto è in grado, già dal tenore dell'odore, di avere informazioni sul livello di trattamento del refluo nel suo percorso attraverso le unità che costituiscono l'impianto di depurazione.

1.3.1.4. Conducibilità elettrolitica

La conducibilità elettrolitica è data dalla sommatoria delle capacità di condurre corrente delle singole specie ioniche presenti in soluzione. Essa fornisce un'informazione sul contenuto salino delle acque reflue e può essere sfruttata per risalire a eventuali scarichi di reflui industriali. La misura della conducibilità può essere effettuata tramite un conduttimetro con cella di 1 cm.

1.3.1.5. Solidi

I solidi totali (ST o TS, *total solids*) rappresentano il residuo del campione sottoposto a evaporazione a 105 °C. Si misurano in mg/l e si dividono in solidi filtrabili totali (disciolti e colloidali) e solidi sospesi totali (sedimentabili e non sedimentabili).

I solidi filtrabili totali (SFT o TFS, total filterable solids) sono la frazione dei solidi totali che non è trattenuta da un filtro di porosità pari a $0.45~\mu m$. I TFS rappresentano la frazione eliminabile esclusivamente mediante processi chimici e biologici; si misurano in mg/l e si dividono in solidi disciolti e solidi colloidali.

I solidi disciolti rappresentano la frazione dei solidi filtrabili presenti in forma di sali solubili. Essi influenzano la conducibilità, ma la loro determinazione viene effettuata mediante la determinazione del residuo secco a 180 $^{\circ}$ C sul filtrato ottenuto dall'analisi dei solidi sospesi. I solidi colloidali, invece, rappresentano la frazione dei solidi filtrabili costituita dalle particelle con diametro compreso nel range 0,001-0,45 μ m.

I solidi sospesi totali (SST o TSS, *Total Suspended Solids*) sono la componente presente in sospensione nel campione e si misurano come la frazione dei solidi totali trattenuta con un filtro da 0,45 μm. Si esprimono in mg/l e si dividono in solidi sedimentabili e solidi non sedimentabili.

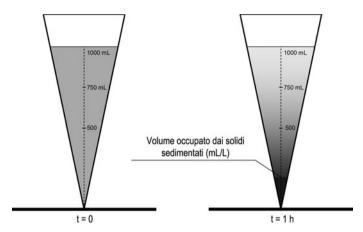


Figura 1.3. Determinazione dei solidi sedimentabili con l'ausilio del cono Imhoff (fonte: De Feo, 2008)

I solidi sedimentabili rappresentano la frazione di solidi sospesi che si deposita sul fondo di una vasca di calma, per effetto della sola forza di gravità, in tempi dell'ordine di 1-2 ore: consentono una stima del materiale che può essere raccolto come fango nella fase di sedimentazione primaria. I solidi sospesi sedimentabili si misurano con il cono Imhoff (figura 1.3) e si esprimono non in termini di concentrazioni, bensì in ml/l (o cm³/l).

La procedura analitica prevede le seguenti fasi successive: miscelare il campione, riempire il cono con 1 litro di campione, lasciar sedimentare per 45 minuti, ruotare delicatamente il cono per favorire il distacco delle particelle dalle pareti del cono, lasciar sedimentare per altri 15 minuti e, infine, leggere il volume dei solidi sedimentati (ml/l).

I solidi non sedimentabili sono costituiti dalla frazione dei solidi sospesi non sedimentabili a causa di fattori quali le dimensioni eccessivamente minute, la natura colloidale, la concentrazione di cariche superficiali.

I solidi volatili rappresentano la frazione che viene distrutta se sottoposta a calcinazione, ovvero a riscaldamento in muffola (una particolare stufa da laboratorio) a 600 °C. I solidi volatili coincidono approssimativamente con la porzione di sostanza organica presente nei solidi sedimentati. I solidi non volatili, invece, costituiscono i residui solidi della calcinazione e, quindi, rappresentano, con la medesima approssimazione, la porzione inorganica del campione, sali e metalli. Le frazioni volatile e non volatile si possono calcolare per ognuna delle singole componenti dei solidi totali.

Assunto, in un campione di reflui urbani, un contenuto di solidi totali pari a 1000 mg/l, si può ritenere che circa il 70% (700 mg/l) sia costituito da solidi filtrabili totali e il restante 30% (300 mg/l) sia costituito da solidi sospesi totali.

Per quanto riguarda i solidi filtrabili, circa il 10% dei 700 mg/l sarà costituito da solidi filtrabili colloidali (70 mg/l), mentre il restante 90% (630 mg/l) sarà composto da solidi filtrabili disciolti.

I 70 mg/l di solidi filtrabili colloidali saranno per circa l'80% di natura organica (56 mg/l) e per circa il 20% di natura minerale (14 mg/l). Per quanto attiene, invece, ai 630 mg/l di solidi filtrabili disciolti, essi saranno per circa il 35% (220 mg/l) di natura organica e per circa il 65% (410 mg/l) di natura minerale. Per quanto riguarda, invece, i solidi sospesi, circa il 70% dei 300 mg/l sarà costituito da solidi sedimentabili (210 mg/l), mentre il restante 30% (90 mg/l) sarà composto da solidi non sedimentabili. I 210 mg/l di solidi sedimentabili saranno per circa il 75% di natura organica (157 mg/l) e per circa il 25% di natura minerale (53 mg/l). Per

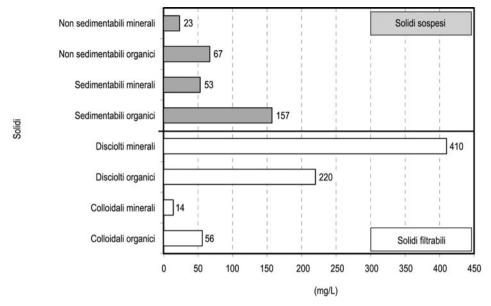


Figura 1.4. Contenuto medio di solidi in un campione di acque reflue civili (fonte: De Feo, 2008)

quanto attiene, invece, ai 90 mg/l di solidi non sedimentabili, essi saranno per circa il 75% (67 mg/l) di natura organica e per circa il 25% (23 mg/l) di natura minerale. Complessivamente ci saranno circa 500 mg/l (50%) di solidi di natura organica e circa 500 mg/l (50%) di solidi di natura minerale.

In figura 1.4 si propone il riepilogo della suddivisione dei solidi totali nelle diverse componenti. La composizione tipica delle acque scarico reflue urbane è riportata in tabella 1.3, con riferimento ai diversi parametri, tra cui i solidi.

1.3.2. Caratteristiche chimiche

La completa definizione delle caratteristiche chimiche delle acque reflue richiede un notevole impegno di tipo analitico. Generalmente la caratterizzazione non riguarda tutte le sostanze inquinanti possibili, ma si limita a individuare quelle caratterizzanti il refluo, anche in funzione della sua origine. Solo in casi particolari e in presenza di alcune tipologie di reflui industriali, si procede alla ricerca e alla determinazione di composti specifici quali, ad esempio, i contaminanti di sintesi di natura organica (PCB, PAH, pesticidi, solventi, ecc.).

1.3.2.1. Domanda chimica di ossigeno (COD)

La domanda chimica di ossigeno, parametro noto con la sigla COD, acronimo dell'inglese chemical oxygen demand, rappresenta la quantità di ossigeno necessaria per ossidare chimicamente le sostanze organiche e inorganiche (biodegradabili e non biodegradabili) presenti nel campione in esame, per mezzo di un ossidante forte, in ambiente acido, a caldo. Il COD è espresso in termini di mgO₂/l equivalenti di ossidante utilizzato. La domanda chimica di ossigeno è un indice estremamente importante, essendo proporzionale al carico inquinante presente nel refluo.

Gli impianti di depurazione nella pratica sono spesso dimensionati sulla base del COD, benché

in letteratura il parametro usato a questi fini sia comunemente il BOD₅, ovvero la domanda biochimica di ossigeno a 5 giorni.

Tabella 1.3. Composizione tipica delle acque di scarico urbane (fonte: Passino, 1980)

Parametro	Unità di misura	Valore			
Falameno	Oliita di Illisura	Liquami forti	Liquami medi	Liquami deboli	
Solidi totali	mg/l	1200	700	350	
Solidi disciolti totali	mg/l	850	500	250	
Solidi disciolti non volatili	mg/l	525	300	145	
Solidi disciolti volatili	mg/l	325	200	105	
Solidi sospesi totali	mg/l	350	200	100	
Solidi sospesi non volatili	mg/l	75	50	30	
Solidi sospesi volatili	mg/l	275	150	70	
Solidi sedimentabili	ml/l	20	10	5	
BOD ₅	mg/l	300	200	100	
Carbonio organico totale (TOC)	mg/l	300	200	100	
COD	mg/l	1000	500	250	
Azoto (somma di tutte le forme, come N)	mg/l	85	40	20	
Azoto organico	mg/l	35	15	8	
Azoto ammoniacale	mg/l	50	25	12	
Azoto nitrico	mg/l	0	0	0	
Azoto nitroso	mg/l	0	0	0	
Fosforo (somma di tutte le forme, come P)	mg/l	20	10	6	
Fosforo organico	mg/l	5	3	2	
Fosforo inorganico	mg/l	15	7	4	
Cloruri	mg/l	100	50	30	
Alcalinità (come CaCO ₃)	mg/l	200	100	50	
Oli e grassi	mg/l	150	100	50	

La misura del COD riveste un'importanza particolarmente significativa nei reflui industriali ove il BOD₅ non è facilmente determinabile o è significativamente influenzato dalla presenza dei contaminanti presenti. Nel caso dei reflui civili, invece, è comune ricorrere al BOD₅. Poiché il COD misura sia la sostanza organica biodegradabile sia quella non biodegradabile, in generale si può affermare che il COD è maggiore del BOD.

Come già anticipato, la determinazione del COD viene eseguita mediante ossidazione a caldo con dicromato di potassio, in presenza di acido solforico e di solfato di argento, come catalizzatore dell'ossidazione. Poiché i cloruri determinano un'interferenza nella misura del COD, in quanto vengono ossidati dal dicromato, per evitare alterazioni nel risultato dell'analisi è necessario addizionare solfato di mercurio (II). In particolare, gli step della prova del COD, posto il campione di refluo da analizzare in un apposito recipiente di vetro insieme a delle sferette di vetro da ebollizione, sono i seguenti:

1) l'addizione di una quantità di solfato di mercurio (II) sufficiente a bloccare i cloruri presenti;

- 2) l'addizione di una prima aliquota di acido solforico (H₂SO₄);
- 3) l'aggiunta del solfato d'argento;
- 4) la successiva aggiunta del dicromato di potassio (K₂Cr₂O₇) quale agente ossidante;
- 5) l'addizione lenta dell'acido solforico.

Il prosieguo dell'analisi prevede che i campioni siano portati a ebollizione per circa due ore e, infine, si titoli il dicromato non reagito con una soluzione di ferro ammonio solfato, per il calcolo dell'ossigeno consumato.

La prova per la determinazione del COD è molto rapida (richiede circa tre ore) e per questo risulta vantaggiosa rispetto alla determinazione del BOD nel controllo di routine di reflui grezzi e depurati, soprattutto industriali, una volta che sia stato quantificato su base statistica il rapporto COD/BOD. In commercio, inoltre, sono disponibili termoreattori di tipo compatto che abbreviano ulteriormente i tempi di analisi. Sebbene i kit lavorino con quantitativi ridotti di campione e, quindi, possono risultare affetti da maggiori errori di misura, sono sufficientemente affidabili.

1.3.2.2. Domanda biochimica di ossigeno (BOD)

La domanda biochimica di ossigeno, parametro noto con la sigla BOD, acronimo dell'inglese biochemical oxygen demand, è uno dei concetti fondamentali nell'ambito del trattamento delle acque reflue e la sua comparsa nella letteratura tecnica risale al 1849, così come riportano Baird e Smith (2002) nel loro lavoro intitolato Third Century of Biochemical Oxygen Demand. Il BOD rappresenta la quantità di ossigeno per unità di volume (e, quindi, la concentrazione) richiesta dai microrganismi aerobici (o aerobi) per assimilare e degradare la sostanza organica biodegradabile presente nel campione in esame. In tal senso il BOD fornisce una misura indiretta della quantità di sostanza organica biodegradabile presente all'interno del campione e tipicamente si esprime in mg/l di O2. In generale, la biodegradazione è l'insieme delle trasformazioni biochimiche di tipo demolitivo di molecole organiche, mediate da microrganismi aerobici o anaerobici. A tal proposito, vale la pena ricordare che i microrganismi aerobi (o aerobici) hanno bisogno di assumere ossigeno libero dall'ambiente, mentre gli anaerobi vivono in assenza di ossigeno libero. I facoltativi, invece, possono vivere in entrambe le condizioni. Dalla definizione appena data si possono estrapolare i tre aspetti fondamentali connessi alla misura del BOD:

- la quantità di ossigeno;
- i microrganismi aerobici;
- la sostanza organica biodegradabile.

La sostanza organica biodegradabile, in realtà, oltre a essere una variabile dalla quale dipende il BOD, è l'oggetto vero dell'analisi. Maggiore è la sostanza organica biodegradabile e maggiore sarà il quantitativo di ossigeno richiesto da parte dei microrganismi aerobici per assimilarla e degradarla.

È opportuno sottolineare che nel campione ci può essere un quantitativo di sostanza organica grande a piacere, ma se non ci sono microrganismi, non è possibile effettuare alcuna misura di BOD. Se il campione da esaminare, pertanto, non contiene un'adeguata flora batterica atta a biodegradare la sostanza organica, bisogna introdurla e, ovviamente, tenerne conto all'atto del computo indiretto della sostanza organica. L'introduzione nel campione di ulteriori microrganismi (inoculo), infatti, può determinare un apporto di sostanza organica. È evidente che la presenza di una maggiore o minore quantità di microrganismi, come pure la specie di microrganismi, non può e non deve influenzare l'esito della misura. In caso contrario, non si avrebbe una misura corretta.

Oltre che dalle precedenti variabili, l'analisi del BOD dipende da altri tre fattori fondamentali:

- il tempo;
- la temperatura;
- la radiazione luminosa.

Il quantitativo di ossigeno che i microrganismi utilizzano per assimilare e degradare la sostanza organica biodegradabile varia al variare del tempo concesso per il processo di biodegradazione. Maggiore è il tempo, infatti, maggiore sarà il quantitativo di sostanza organica assimilata e degradata e, quindi, maggiore sarà la quantità di ossigeno consumata dai microrganismi stessi. Un valore caratteristico della domanda biochimica di ossigeno è il BOD₅, ovvero il consumo di ossigeno dopo 5 giorni (domanda biochimica di ossigeno a 5 giorni).

Teoricamente, se si vuole avere una misura indiretta di tutta la sostanza organica presente all'interno del campione, bisogna concedere un tempo infinito ai microrganismi per espletare la loro azione.

La misura che si otterrà è il cosiddetto BOD ultimo (BOD $_u$) che rappresenta il quantitativo di ossigeno complessivamente richiesto per ossidare tutta la frazione organica. Con riferimento al BOD $_u$, inoltre, si definisce BOD residuo il quantitativo di ossigeno richiesto dai microrganismi aerobi per ossidare tutta la frazione organica residua e, cioè, quella non ancora consumata (assimilata e degradata). Il BOD consumato, invece, rappresenta il complemento del BOD residuo rispetto al BOD ultimo. Vale, evidentemente, la seguente relazione:

$$BOD_u = BOD_{residuo} + BOD_{consumato}$$
 (1.3)

Il BOD e, quindi, il consumo di ossigeno, si sviluppa nel tempo secondo una curva caratteristica, riportata in figura 1.5 e nota come *curva di Thierault*.

Nella curva di Thierault si possono distinguere due stadi successivi:

- 1° stadio, in cui il consumo di ossigeno è dovuto all'ossidazione biologica della frazione carboniosa della sostanza organica;
- 2º stadio, in cui il consumo di ossigeno è dovuto all'ossidazione della frazione azotata della sostanza organica (nitrificazione).

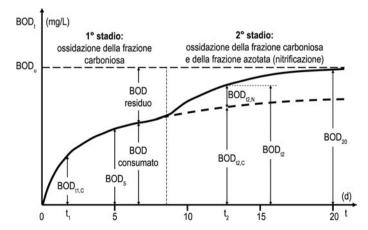


Figura 1.5. Tipica curva di sviluppo del BOD (curva di Thierault) (fonte: De Feo, 2008)

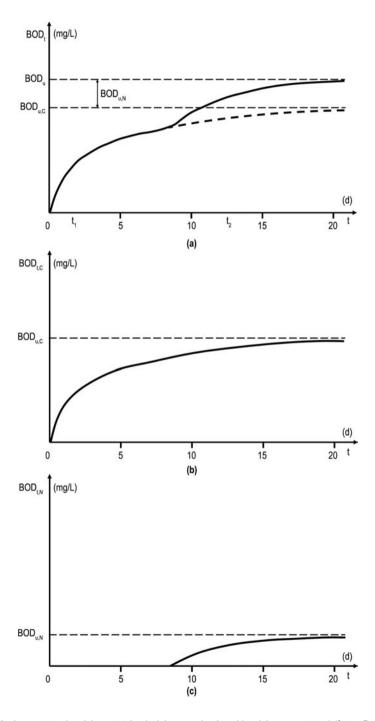


Figura 1.6. Andamento teorico del BOD totale a), del BOD carbonioso b) e del BOD azotato c) (fonte: De Feo, 2008)

Il passaggio da uno stadio a un altro della curva avviene con una caratteristica "gobba", la quale indica che, da un certo istante in poi, sul fenomeno di ossidazione biologica della frazione carboniosa si innesta il fenomeno della nitrificazione.

Questo innesto, nel caso delle acque reflue civili e di corsi d'acqua debolmente inquinati, avviene sicuramente dopo 5 giorni, costituendo uno dei motivi per cui la misura del BOD_5 assume un'importanza fondamentale. Al tempo $t_1 < 5d$, infatti, il BOD misura esclusivamente l'ossidazione della frazione carboniosa della sostanza organica biodegradabile. Al crescere del tempo, invece, dopo i primi cinque giorni, inizia il fenomeno della nitrificazione e, quindi, con riferimento, ad esempio, alla figura 1.5, per il tempo t_2 si può scrivere che:

$$BOD_{t2} = BOD_{t2,C} + BOD_{t2,N}$$

$$(1.4)$$

Il BOD totale, pertanto, è dato dalla somma del BOD carbonioso e del BOD azotato. La (1.4) si può evidentemente scrivere anche per il tempo t_1 , osservando che per esso il BOD azotato risulta pari a zero:

$$BOD_{t1} = BOD_{t1,C} + BOD_{t1,N}$$
 (1.5)

$$BOD_{t1} = BOD_{t1,C} + 0 \tag{1.6}$$

$$BOD_{t1} = BOD_{t1,C} \tag{1.7}$$

In generale, pertanto, si può assumere quanto segue:

$$BOD_{t,Totale} = BOD_{t,Carbonioso} + BOD_{t,Azotato}$$
 (1.8)

$$BOD_t = BOD_{tC} + BOD_{tN}$$
 (1.9)

La (1.9), ovviamente, vale anche per un tempo t infinito e, cioè, per il BOD ultimo:

$$BOD_{u} = BOD_{uC} + BOD_{uN}$$
 (1.10)

In figura 1.6 si mostra l'andamento teorico del BOD totale, del BOD carbonioso e del BOD azotato in tre grafici separati, sovrapposti in modo da esplicitare ulteriormente i concetti su esposti. Il BOD carbonioso, come più volte ribadito, rappresenta la richiesta di ossigeno per ossidare i composti organici, i cui atomi di carbonio sono utilizzati dai microrganismi come nutrimento per le loro attività vitali (accrescimento, respirazione, riproduzione). Nel caso di acque reflue civili, acque reflue urbane eminentemente civili e corsi d'acqua debolmente inquinati, il BOD carbonioso costituisce la parte più significativa del BOD totale.

Il tasso di sviluppo del BOD varia con la temperatura, essendo più rapido a temperature elevate (si veda figura 1.7).

I microrganismi, infatti, entro certi limiti incrementano la loro attività all'aumentare della temperatura e, quindi, tendono a consumare più rapidamente la sostanza organica presente nel campione, richiedono maggiori quantitativi di ossigeno in minor tempo. Il BOD ultimo, invece, non dipende dalla temperatura, in quanto, vale la pena ricordarlo, esso rappresenta una misura indiretta di tutta la sostanza organica biodegradabile presente all'interno del campione. La misura del BOD, convenzionalmente si esegue alla temperatura di 20 °C. Dal momento che i processi biologici sono evidentemente influenzati dalle radiazioni luminose, per questo motivo la determinazione del BOD si esegue al buio.

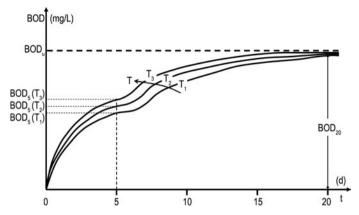


Figura 1.7. Andamento del BOD al variare della temperatura (fonte: De Feo, 2008)

Di seguito si procede alla determinazione di un'espressione analitica che consente di valutare il BOD carbonioso in funzione del tempo e della temperatura. A tal proposito, si osserva che il BOD *soddisfatto* al tempo *t* rappresenta il quantitativo di ossigeno consumato sino a quell'istante, mentre il BOD *residuo* rappresenta la differenza tra il BOD ultimo e il BOD soddisfatto. Con riferimento alla figura 1.8 si può scrivere:

$$y(t) = L - L_t \tag{1.11}$$

dove

 L_t = BOD residuo nell'acqua al tempo t

y(t) = BOD soddisfatto al tempo t

L = BOD ultimo, ovvero BOD residuo al tempo t = 0.

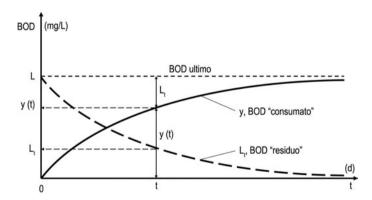


Figura 1.8. Andamento del BOD carbonioso consumato e residuo (fonte: De Feo, 2008)

Lo sviluppo del BOD carbonioso ha un andamento abbastanza regolare che può essere espresso, in termini analitici, attraverso una cinetica del 1° ordine:

$$\frac{dL_t}{dt} = -k \cdot L_t \tag{1.12}$$

dove

k = costante della cinetica di 1° ordine del BOD carbonioso alla temperatura di 20 °C, tipicamente espressa in d^{-1} .

Integrando la (1.12) si ottiene l'espressione che fornisce il BOD carbonioso residuo:

$$\frac{dL_t}{L_t} = -k \cdot dt \Rightarrow L_t = L \cdot e^{-k \cdot t} \tag{1.13}$$

da cui si può ricavare l'espressione del BOD consumato:

$$y(t) = L - L_t = L \cdot (1 - e^{-k \cdot t})$$
 (1.14)

cioè

$$BOD_{t} = BOD_{t} \cdot (1 - e^{-k \cdot t}) \tag{1.15}$$

Nel caso di acque di fiume debolmente inquinate e di acque reflue, in assenza di determinazioni sperimentali, per k si può assumere il valore 0,23 d^{-1} , valido per la temperatura di riferimento di 20 °C.

Ai fini pratici è lecito approssimare il BOD ultimo (BOD_u) con il BOD a 20 giorni (BOD₂₀). Di seguito si valuta l'approssimazione che si commette con una tale semplificazione:

$$\frac{BOD_{20}}{BOD_{u}} = \frac{BOD_{u} \left(1 - e^{-k \cdot 20}\right)}{BOD_{u}} = 1 - e^{-k \cdot 20}$$
(1.16)

$$\frac{BOD_{20}}{BOD_u} = 1 - e^{-0.23d^{-1} \cdot 20d} = 0.99$$
 (1.17)

$$\frac{BOD_u}{BOD_{20}} = \frac{1}{0.99} = 1.01 \tag{1.18}$$

Il BOD_{20} , pertanto, è pari a circa il 99% del BOD_u . Il BOD_u , invece, è ovviamente pari a 1,01 volte il BOD_{20} . Per avere una misura attendibile del BOD ultimo non bisognerà aspettare un tempo infinito, ma ci si potrà limitare a soli 20 giorni.

Di seguito si procede a valutare il rapporto teorico che intercorre tra il BOD, e il BOD,

$$\frac{BOD_{5}}{BOD_{u}} = \frac{BOD_{u} \left(1 - e^{-k \cdot 5}\right)}{BOD_{u}} = 1 - e^{-k \cdot 5}$$
(1.19)

$$\frac{BOD_5}{BOD_u} = 1 - e^{-0.23d^{-1} \cdot 5d} = 0,68$$
 (1.20)

$$\frac{BOD_u}{BOD_5} = \frac{1}{0.68} = 1.46 \tag{1.21}$$

Dalla (1.20), pertanto, si deduce che il BOD_5 è teoricamente pari a circa il 68% del BOD_u . Secondo la (1.21), perciò, il BOD_u è 1,46 volte il BOD_5 .

La (1.15) esprime l'andamento del BOD in funzione del tempo alla temperatura standard di 20 °C. Per portare in conto l'effetto della temperatura, bisogna passare a una funzione in due variabili. L'unico parametro della (1.15) che può dipendere dalla temperatura è, ovviamente, la costante della cinetica (*k*). A tal proposito, per determinare il valore della costante di reazione per temperature diverse da 20 °C, si può utilizzare l'equazione di *van't Hoff-Arrhenius*:

$$k_T = k \cdot \theta^{(T-20)}$$
 $20 \, ^{\circ}\text{C} \le T \le 30 \, ^{\circ}\text{C}$ (1.22)

dove

 k_T = costante della cinetica di reazione alla temperatura T, k_T = k(T)

 \vec{k} = costante della cinetica di reazione a 20 °C, k_{20}

T = temperatura

 θ = coefficiente di attività microbica (θ = 1,056 per acque reflue civili e acque inquinate).

In figura 1.9 si riporta l'andamento della costante della cinetica del BOD carbonioso, in funzione della temperatura, secondo l'equazione di van't Hoff-Arrhenius (1.22).

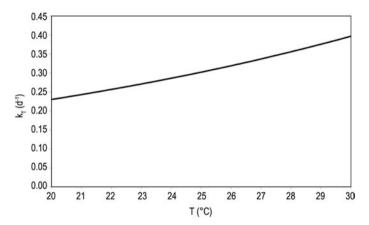


Figura 1.9. Andamento della costante della cinetica del BOD carbonioso in funzione della temperatura secondo l'equazione di *van't Hoff-Arrhenius* (fonte: De Feo, 2008)

Per stimare il BOD carbonioso a un determinato istante (t) e per una certa temperatura (T) si possono combinare la (1.15) e la (1.22):

$$\begin{cases} BOD_{t} = BOD_{u} (1 - e^{-k_{T} t}) \\ k_{T} = k\theta^{(T - 20)}; 20 \text{ °C} \le T \le 30 \text{ °C} \end{cases}$$
(1.23)

cioè

$$BOD_{t,T} = BOD(t,T) = BOD_{u} \left[1 - e^{-k \theta^{(T-20)} t}\right]$$
 (1.24)

La determinazione diretta del BOD₅ si basa sulla misura dell'ossigeno disciolto nel campione da analizzare prima e dopo un'incubazione di cinque giorni, al buio e alla temperatura di 20 °C. La differenza fra le due determinazioni fornisce il valore del BOD₅ del campione, espresso in mg/l di ossigeno (si veda figura 1.10). Il consumo di ossigeno può essere misurato con l'ausilio di un respirometro; si ricorda che i primi respirometri apparsi in commercio per la misura dell'ossigeno disciolto in campioni d'acqua fanno riferimento a tre tipologie di base (Baird e Smith, 2002):

- l'apparato di Sierp;
- il manometro differenziale Barcrofit;
- il manometro Warburg.

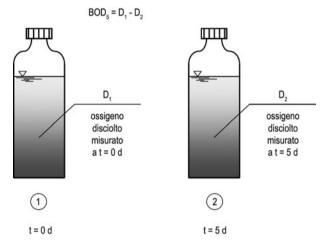


Figura 1.10. Determinazione diretta del BOD₅ per differenza di ossigeno disciolto prima e dopo incubazione a cinque giorni (fonte: De Feo, 2008)

Il rapporto COD/BOD₅ è considerato rappresentativo della trattabilità biologica dei reflui. In particolare, secondo Vismara (1998) la trattabilità biologica di una sostanza o di una miscela di sostanze è la suscettibilità di tali sostanze ad essere degradate, in toto o in parte, o quanto meno di venire rimosse biologicamente dalla fase da risanare, nei tempi e nei modi considerati convenienti dalla specifica biotecnologia applicata. Una soddisfacente trattabilità biologica deve implicare, perciò, che la biotecnologia impiegata sia in grado di rimuovere la miscela di inquinanti con un grado di efficienza percentuale soddisfacente, in tempi tecnici compatibili ed economicamente convenienti.

In generale, con riferimento alle acque reflue, sulla base del valore assunto dal rapporto COD/BOD₅ si possono fare le seguenti considerazioni (Vismara, 1998):

- un valore prossimo all'unità è indice di un'elevata trattabilità biologica;
- valori compresi nel range 1,8-2,4 sono rappresentativi di liquami civili ad elevata trattabilità biologica;
- valori superiori a 4-5 sono indicativi di reflui non trattabili biologicamente.

Nonostante il test del BOD sia ancora comunemente impiegato per valutare la biodegradabilità di acque reflue civili, di acque reflue urbane e anche di acque reflue industriali, oltre che per il monitoraggio dei corpi idrici, una serie di limitazioni lo rendono una misurazione poco atten-

dibile nel caso di effluenti contenenti composti tossici o inibenti della biomassa. Ai fini di una corretta determinazione del BOD, infatti, sono indispensabili la presenza di un'attiva e acclimatata coltura batterica, agenti chimici necessari a inibire la nitrificazione o un pre-trattamento per eliminare gli organismi nitrificanti, l'assenza di sostanze tossiche ai microrganismi.

Per ottenere il BOD₅ senza nitrificazione occorre aggiungere un inibitore di nitrificazione al campione da analizzare. L'alliltiourea (ATH) è uno degli inibitori maggiormente utilizzati per prevenire l'ossidazione dell'ammoniaca. Da tre secoli si studia il BOD e, mentre si discute se sia ancora utile per valutare la trattabilità biologica delle acque reflue, esso continua a essere uno degli argomenti più utilizzati nell'ambito dell'ingegneria sanitaria ambientale.

1.3.2.3. Composti dell'azoto

L'azoto è presente nei reflui sotto varie forme, la cui determinazione è importante per il dimensionamento delle fasi di trattamento biologico (nitrificazione e denitrificazione), nonché delle apparecchiature che dovranno fornire l'ossigeno necessario al trattamento.

L'azoto totale (N-N_{tot}) comprende le seguenti forme dell'azoto:

- azoto organico (N-N_{org});
- azoto ammoniacale (N-N_{amm});
- azoto nitroso (N-NO₂-), nitriti (NO₂-);
- azoto nitrico (N-NO₃-), nitrati (NO₃-).

Poiché l'azoto totale è la somma di tutte le forme elencate, si può scrivere la seguente relazione:

$$N-N_{tot} = N-N_{org} + N-N_{amm} + N-NO_{2}^{-} + N-NO_{3}^{-}$$
 (1.25)

L'azoto organico (determinato col metodo *Kjeldhal*) è quello legato alle proteine e agli altri composti organici azotati e per effetto dei trattamenti depurativi si converte in azoto ammoniacale. Per la misura dell'azoto organico, il campione d'acqua è preliminarmente portato a ebollizione per allontanare l'ammoniaca e successivamente è sottoposto a digestione. Durante la digestione, l'azoto organico è convertito ad ammoniaca.

Una misura particolare di azoto è il TKN che si determina nella medesima maniera dell'azoto organico, con l'eccezione che l'ammoniaca non è allontanata prima di passare alla digestione. Il TKN, in pratica, misura sia l'azoto organico che l'azoto ammoniacale:

$$TKN = azoto organico + azoto ammoniacale$$
 (1.26)

L'azoto ammoniacale (che si determina col metodo di *Nessler* o con altri metodi in genere spettrofotometrici) è la forma principale in cui si trova l'azoto nei reflui non trattati. Esso deve essere nitrificato ed eventualmente denitrificato negli impianti di depurazione per evitare impatti negativi sugli ambienti acquatici.

L'azoto nitroso $(N-NO_2^-)$ – determinato sempre con metodi spettrofotometrici come quello di *Griess* – è una forma intermedia, parzialmente ossidata, dell'azoto prima della sua conversione in azoto nitrico $(N-NO_3^-)$, la forma più stabile dell'azoto.

Per passare da una concentrazione espressa in termini di nitriti (NO_2^-) alla stessa concentrazione espressa in termini di azoto nitroso $(N-NO_2^-)$, si può utilizzare la seguente relazione:

$$[N-NO_2^-] = (14/46) \cdot [NO_2^-] = 0.30 \cdot [NO_2^-]$$
 (1.27)

mentre per il viceversa:

$$[NO_2^{-1}] = (46/14) \cdot [N-NO_2^{-1}] = 3,28 \cdot [N-NO_2^{-1}]$$
 (1.28)

essendo 14 e 46 rispettivamente il peso atomico e molecolare di azoto e nitriti.